Probabilistic model of whole-body motion imitation from partial observations

Dongheui Lee, Y. Nakamura
{"title":"Probabilistic model of whole-body motion imitation from partial observations","authors":"Dongheui Lee, Y. Nakamura","doi":"10.1109/ICAR.2005.1507433","DOIUrl":null,"url":null,"abstract":"In this paper, a new mimesis scheme is proposed. This scheme enables for a humanoid to imitate human's motion even though the humanoid cannot see human's whole-body motion and the humanoid has not seen the exactly same motion so far. Mimesis framework is based on continuous hidden Markov model. Viterbi algorithm is applied in order to generate more various motion patterns than the number of existing hidden Markov models. In order to imitate other's motion in a smooth way, a smoothing technique in generation problem is realized. The feasibility of this method is demonstrated by simulation on a 20 degrees of freedom humanoid robot configuration","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a new mimesis scheme is proposed. This scheme enables for a humanoid to imitate human's motion even though the humanoid cannot see human's whole-body motion and the humanoid has not seen the exactly same motion so far. Mimesis framework is based on continuous hidden Markov model. Viterbi algorithm is applied in order to generate more various motion patterns than the number of existing hidden Markov models. In order to imitate other's motion in a smooth way, a smoothing technique in generation problem is realized. The feasibility of this method is demonstrated by simulation on a 20 degrees of freedom humanoid robot configuration
基于局部观测的全身运动模仿的概率模型
本文提出了一种新的模拟方案。这种方案使仿人机器人能够模仿人类的运动,即使仿人机器人无法看到人类的全身运动,而且到目前为止,仿人机器人还没有看到完全相同的运动。Mimesis框架基于连续隐马尔可夫模型。为了生成比现有隐马尔可夫模型数量更多的运动模式,采用了维特比算法。为了平滑地模仿他人的运动,实现了生成问题中的平滑技术。通过对一个20自由度仿人机器人构型的仿真,验证了该方法的可行性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信