Spatial-Temporal Separable Attention for Video Action Recognition

Xi Guo, Yikun Hu, Fang Chen, Yuhui Jin, Jian Qiao, Jian Huang, Qin Yang
{"title":"Spatial-Temporal Separable Attention for Video Action Recognition","authors":"Xi Guo, Yikun Hu, Fang Chen, Yuhui Jin, Jian Qiao, Jian Huang, Qin Yang","doi":"10.1109/FAIML57028.2022.00050","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have been proved as a efficient method for various of visual recognition tasks. However, it is more difficult for CNNs to capture long-range spatial-temporal cues in dynamic videos than in static images. Recent nonlocal neural networks attempt to overcome this problem by a self-attention mechanism, where pair-wise affinities for all the spatial-temporal positions are calculated. However, this introduces a substantial computational burden. In this paper, we propose a spatial-temporal separable attention module (STSAM) to reduce the computational complexity. The experimental results, based on the Kinetics 400 benchmark, show that our model achieves better performance but introduces less extra FLOPs than nonlocal neural networks.","PeriodicalId":307172,"journal":{"name":"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAIML57028.2022.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks (CNNs) have been proved as a efficient method for various of visual recognition tasks. However, it is more difficult for CNNs to capture long-range spatial-temporal cues in dynamic videos than in static images. Recent nonlocal neural networks attempt to overcome this problem by a self-attention mechanism, where pair-wise affinities for all the spatial-temporal positions are calculated. However, this introduces a substantial computational burden. In this paper, we propose a spatial-temporal separable attention module (STSAM) to reduce the computational complexity. The experimental results, based on the Kinetics 400 benchmark, show that our model achieves better performance but introduces less extra FLOPs than nonlocal neural networks.
视频动作识别的时空可分离注意
卷积神经网络(cnn)已被证明是一种有效的视觉识别方法。然而,cnn在动态视频中捕获远程时空线索比在静态图像中更难。最近的非局部神经网络试图通过一种自注意机制来克服这个问题,在这种机制中,所有时空位置的成对亲和性都被计算出来。然而,这带来了大量的计算负担。在本文中,我们提出了一个时空可分离的注意模块(STSAM)来降低计算复杂度。基于Kinetics 400基准测试的实验结果表明,我们的模型比非局部神经网络具有更好的性能,并且引入的额外FLOPs更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信