R. García, Matthias Bender, Mojisola Erdt, Christoph Rensing, R. Steinmetz
{"title":"FReSET: an evaluation framework for folksonomy-based recommender systems","authors":"R. García, Matthias Bender, Mojisola Erdt, Christoph Rensing, R. Steinmetz","doi":"10.1145/2365934.2365939","DOIUrl":null,"url":null,"abstract":"FReSET is a new recommender systems evaluation framework aiming to support research on folksonomy-based recommender systems. It provides interfaces for the implementation of folksonomy-based recommender systems and supports the consistent and reproducible offline evaluations on historical data. Unlike other recommender systems framework projects, the emphasis here is on providing a flexible framework allowing users to implement their own folksonomy-based recommender algorithms and pre-processing filtering methods rather than just providing a collection of collaborative filtering implementations. FReSET includes a graphical interface for result visualization and different cross-validation implementations to complement the basic functionality.","PeriodicalId":258534,"journal":{"name":"Proceedings of the 4th ACM RecSys workshop on Recommender systems and the social web","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM RecSys workshop on Recommender systems and the social web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2365934.2365939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
FReSET is a new recommender systems evaluation framework aiming to support research on folksonomy-based recommender systems. It provides interfaces for the implementation of folksonomy-based recommender systems and supports the consistent and reproducible offline evaluations on historical data. Unlike other recommender systems framework projects, the emphasis here is on providing a flexible framework allowing users to implement their own folksonomy-based recommender algorithms and pre-processing filtering methods rather than just providing a collection of collaborative filtering implementations. FReSET includes a graphical interface for result visualization and different cross-validation implementations to complement the basic functionality.