Generating text description from content-based annotated image

Yan Zhu, Hui Xiang, Wenjuan Feng
{"title":"Generating text description from content-based annotated image","authors":"Yan Zhu, Hui Xiang, Wenjuan Feng","doi":"10.1109/ICSAI.2012.6223132","DOIUrl":null,"url":null,"abstract":"This paper proposes a statistical generative model to generate sentences from an annotated picture. The images are segmented into regions (using Graph-based algorithms) and then features are computed over each of these regions. Given a training set of images with annotations, we parse the image to get position information. We use SVM to get the probabilities of combinations between labels and prepositions, obtain the data to text set. We use a standard semantic representation to express the image message. Finally generate sentence from the xml report. In view of landscape pictures, this paper implemented experiments on the dataset we collected and annotated, obtained ideal results.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a statistical generative model to generate sentences from an annotated picture. The images are segmented into regions (using Graph-based algorithms) and then features are computed over each of these regions. Given a training set of images with annotations, we parse the image to get position information. We use SVM to get the probabilities of combinations between labels and prepositions, obtain the data to text set. We use a standard semantic representation to express the image message. Finally generate sentence from the xml report. In view of landscape pictures, this paper implemented experiments on the dataset we collected and annotated, obtained ideal results.
从基于内容的注释图像生成文本描述
本文提出了一种统计生成模型,用于从标注图片中生成句子。图像被分割成区域(使用基于图的算法),然后在每个区域上计算特征。给定一个带有注释的图像训练集,我们解析图像以获得位置信息。我们利用支持向量机得到标签和介词组合的概率,得到数据到文本集。我们使用标准的语义表示来表达图像信息。最后从xml报告中生成语句。针对风景图片,本文在采集并标注的数据集上进行了实验,取得了理想的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信