Time-Domain Numerical Dosimetry in Realistic Human Model Using non-Conformal Meshing

A. Ijjeh, M. Cueille, J. Dubard, M. Ney
{"title":"Time-Domain Numerical Dosimetry in Realistic Human Model Using non-Conformal Meshing","authors":"A. Ijjeh, M. Cueille, J. Dubard, M. Ney","doi":"10.23919/USNC/URSI49741.2020.9321620","DOIUrl":null,"url":null,"abstract":"Numerical dosimetry is a mandatory step in the designing process of any new EM device that operates in presence of living beings. One of its objectives is to ensure that a maximum Specific Absorption Rate (SAR) never exceeds the recommended values. In addition, including human models in simulations is necessary to evaluate the impact of human presence on the performance of the new EM device under design; hence, the device can be optimized accordingly. This article presents a numerical scheme for computing the SAR in multi-scale scenarios involving complex media (ex. human tissues). Cartesian sub-gridding is used to increase the resolution in certain regions in the computational domain. An experiment of SAR computation in a human head illuminated by a plane wave is presented. Sub-gridding is used to finely mesh the eye region as it contains sensitive tissues. Note that the sub-gridding interface crosses several heterogeneous tissues in the human head without affecting the accuracy of the simulations. Comparisons with uniform meshing are presented to show the CPU time and memory gain and the validity of the proposed approach.","PeriodicalId":443426,"journal":{"name":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC/URSI49741.2020.9321620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Numerical dosimetry is a mandatory step in the designing process of any new EM device that operates in presence of living beings. One of its objectives is to ensure that a maximum Specific Absorption Rate (SAR) never exceeds the recommended values. In addition, including human models in simulations is necessary to evaluate the impact of human presence on the performance of the new EM device under design; hence, the device can be optimized accordingly. This article presents a numerical scheme for computing the SAR in multi-scale scenarios involving complex media (ex. human tissues). Cartesian sub-gridding is used to increase the resolution in certain regions in the computational domain. An experiment of SAR computation in a human head illuminated by a plane wave is presented. Sub-gridding is used to finely mesh the eye region as it contains sensitive tissues. Note that the sub-gridding interface crosses several heterogeneous tissues in the human head without affecting the accuracy of the simulations. Comparisons with uniform meshing are presented to show the CPU time and memory gain and the validity of the proposed approach.
基于非保形网格的真实人体模型时域数值剂量学
数值剂量测定是任何在生物存在下操作的新EM设备设计过程中的强制性步骤。其目标之一是确保最大比吸收率(SAR)不超过推荐值。此外,在模拟中包括人类模型对于评估人类存在对设计中的新EM设备性能的影响是必要的;因此,可以对设备进行相应的优化。本文提出了一种计算复杂介质(如人体组织)多尺度SAR的数值方案。在计算域的特定区域采用笛卡尔子网格来提高分辨率。给出了平面波照射下人体头部SAR计算的实验。由于眼部区域含有敏感组织,采用子网格法对眼部区域进行精细网格化。注意,子网格界面在不影响模拟精度的情况下跨越了人类头部的几个异质组织。通过与均匀网格划分的比较,证明了该方法在CPU时间和内存增益方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信