End-to-end training approaches for discriminative segmental models

Hao Tang, Weiran Wang, Kevin Gimpel, Karen Livescu
{"title":"End-to-end training approaches for discriminative segmental models","authors":"Hao Tang, Weiran Wang, Kevin Gimpel, Karen Livescu","doi":"10.1109/SLT.2016.7846309","DOIUrl":null,"url":null,"abstract":"Recent work on discriminative segmental models has shown that they can achieve competitive speech recognition performance, using features based on deep neural frame classifiers. However, segmental models can be more challenging to train than standard frame-based approaches. While some segmental models have been successfully trained end to end, there is a lack of understanding of their training under different settings and with different losses.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recent work on discriminative segmental models has shown that they can achieve competitive speech recognition performance, using features based on deep neural frame classifiers. However, segmental models can be more challenging to train than standard frame-based approaches. While some segmental models have been successfully trained end to end, there is a lack of understanding of their training under different settings and with different losses.
判别分段模型的端到端训练方法
最近对判别分段模型的研究表明,它们可以使用基于深度神经框架分类器的特征来实现竞争性的语音识别性能。然而,片段模型的训练可能比标准的基于框架的方法更具挑战性。虽然一些分段模型已经成功地端到端训练,但缺乏对不同设置和不同损失下的训练的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信