Local classifier chains for deep face recognition

Lingfeng Zhang, I. Kakadiaris
{"title":"Local classifier chains for deep face recognition","authors":"Lingfeng Zhang, I. Kakadiaris","doi":"10.1109/BTAS.2017.8272694","DOIUrl":null,"url":null,"abstract":"This paper focuses on improving the performance of current convolutional neural networks in face recognition without changing the network architecture. We propose a hierarchical framework that builds chains of local binary neural networks after one global neural network over all the class labels, Local Classifier Chains based Convolutional Neural Networks (LCC-CNN). Two different criteria based on a similarity matrix and confusion matrix are introduced to select binary label pairs to create local deep networks. To avoid error propagation, each testing sample travels through one global model and a local classifier chain to obtain its final prediction. The proposed framework has been evaluated with UHDB31 and CASIA-WebFace datasets. The experimental results indicate that our framework achieves better performance when compared with using only baseline methods as the global deep network. The accuracy is improved by 2.7% and 0.7% on the two datasets, respectively.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper focuses on improving the performance of current convolutional neural networks in face recognition without changing the network architecture. We propose a hierarchical framework that builds chains of local binary neural networks after one global neural network over all the class labels, Local Classifier Chains based Convolutional Neural Networks (LCC-CNN). Two different criteria based on a similarity matrix and confusion matrix are introduced to select binary label pairs to create local deep networks. To avoid error propagation, each testing sample travels through one global model and a local classifier chain to obtain its final prediction. The proposed framework has been evaluated with UHDB31 and CASIA-WebFace datasets. The experimental results indicate that our framework achieves better performance when compared with using only baseline methods as the global deep network. The accuracy is improved by 2.7% and 0.7% on the two datasets, respectively.
深度人脸识别的局部分类器链
本文的重点是在不改变卷积神经网络结构的情况下,提高现有卷积神经网络在人脸识别中的性能。我们提出了一种分层框架,在一个覆盖所有类标签的全局神经网络之后构建局部二元神经网络链,即基于局部分类器链的卷积神经网络(lc - cnn)。引入基于相似矩阵和混淆矩阵的两种不同准则来选择二元标签对以创建局部深度网络。为了避免误差传播,每个测试样本通过一个全局模型和一个局部分类器链来获得最终的预测。已使用UHDB31和CASIA-WebFace数据集对提议的框架进行了评估。实验结果表明,与仅使用基线方法作为全局深度网络相比,我们的框架取得了更好的性能。在两个数据集上,准确率分别提高了2.7%和0.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信