Magnitude Prediction Model for Japan Seismic Tremors Using Artificial Neural Network

R. S. Kamath, R. Kamat
{"title":"Magnitude Prediction Model for Japan Seismic Tremors Using Artificial Neural Network","authors":"R. S. Kamath, R. Kamat","doi":"10.1109/PuneCon55413.2022.10014739","DOIUrl":null,"url":null,"abstract":"The artificial neural network (ANN) model for predicting seismic tremor magnitudes for Japan is portrayed in this paper. The authors have retrieved the earthquake dataset from European-Mediterranean Seismological Center for this study. The dataset comprises a list of 5000 quake events that occurred from 1st July 2010 to 14th April 2016 in the region of Japan. Different neural network structures and ANN configurations exemplify the ANN model construction. The experiment is carried out by fine-tuning network variables such as type, transfer function, training function, and hidden neurons. The forecast accuracies of each of these network configurations are compared. The resultant ANN model features Levenberg-Marquardt backpropagation method for training the model, the nonlinear sigmoid activation function for the hidden layer, and the model's performance is evaluated concerning Mean Squared Error (MSE) and Gradient (g).","PeriodicalId":258640,"journal":{"name":"2022 IEEE Pune Section International Conference (PuneCon)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Pune Section International Conference (PuneCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PuneCon55413.2022.10014739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The artificial neural network (ANN) model for predicting seismic tremor magnitudes for Japan is portrayed in this paper. The authors have retrieved the earthquake dataset from European-Mediterranean Seismological Center for this study. The dataset comprises a list of 5000 quake events that occurred from 1st July 2010 to 14th April 2016 in the region of Japan. Different neural network structures and ANN configurations exemplify the ANN model construction. The experiment is carried out by fine-tuning network variables such as type, transfer function, training function, and hidden neurons. The forecast accuracies of each of these network configurations are compared. The resultant ANN model features Levenberg-Marquardt backpropagation method for training the model, the nonlinear sigmoid activation function for the hidden layer, and the model's performance is evaluated concerning Mean Squared Error (MSE) and Gradient (g).
基于人工神经网络的日本地震震级预测模型
本文建立了预测日本地震震级的人工神经网络(ANN)模型。作者为这项研究检索了欧洲-地中海地震中心的地震数据集。该数据集包括2010年7月1日至2016年4月14日在日本地区发生的5000次地震事件的列表。不同的神经网络结构和人工神经网络配置说明了人工神经网络模型的构建。实验通过微调网络变量如类型、传递函数、训练函数和隐藏神经元来进行。对每种网络配置的预测精度进行了比较。所得到的人工神经网络模型采用Levenberg-Marquardt反向传播方法训练模型,采用非线性sigmoid激活函数作为隐藏层,并通过均方误差(MSE)和梯度(g)来评估模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信