Single-Stage is Enough: Multi-Person Absolute 3D Pose Estimation

Lei Jin, Chenyang Xu, Xiaojuan Wang, Yabo Xiao, Yandong Guo, Xuecheng Nie, Jian Zhao
{"title":"Single-Stage is Enough: Multi-Person Absolute 3D Pose Estimation","authors":"Lei Jin, Chenyang Xu, Xiaojuan Wang, Yabo Xiao, Yandong Guo, Xuecheng Nie, Jian Zhao","doi":"10.1109/CVPR52688.2022.01274","DOIUrl":null,"url":null,"abstract":"The existing multi-person absolute 3D pose estimation methods are mainly based on two-stage paradigm, i.e., top-down or bottom-up, leading to redundant pipelines with high computation cost. We argue that it is more desirable to simplify such two-stage paradigm to a single-stage one to promote both efficiency and performance. To this end, we present an efficient single-stage solution, Decoupled Regression Model (DRM), with three distinct novelties. First, DRM introduces a new decoupled representation for 3D pose, which expresses the 2D pose in image plane and depth information of each 3D human instance via 2D center point (center of visible keypoints) and root point (denoted as pelvis), respectively. Second, to learn better feature representation for the human depth regression, DRM introduces a 2D Pose-guided Depth Query Module (PDQM) to extract the features in 2D pose regression branch, enabling the depth regression branch to perceive the scale information of instances. Third, DRM leverages a Decoupled Absolute Pose Loss (DAPL) to facilitate the absolute root depth and root-relative depth estimation, thus improving the accuracy of absolute 3D pose. Comprehensive experiments on challenging benchmarks including MuPoTS-3D and Panoptic clearly verify the superiority of our framework, which outperforms the state-of-the-art bottom-up absolute 3D pose estimation methods.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"575 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.01274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The existing multi-person absolute 3D pose estimation methods are mainly based on two-stage paradigm, i.e., top-down or bottom-up, leading to redundant pipelines with high computation cost. We argue that it is more desirable to simplify such two-stage paradigm to a single-stage one to promote both efficiency and performance. To this end, we present an efficient single-stage solution, Decoupled Regression Model (DRM), with three distinct novelties. First, DRM introduces a new decoupled representation for 3D pose, which expresses the 2D pose in image plane and depth information of each 3D human instance via 2D center point (center of visible keypoints) and root point (denoted as pelvis), respectively. Second, to learn better feature representation for the human depth regression, DRM introduces a 2D Pose-guided Depth Query Module (PDQM) to extract the features in 2D pose regression branch, enabling the depth regression branch to perceive the scale information of instances. Third, DRM leverages a Decoupled Absolute Pose Loss (DAPL) to facilitate the absolute root depth and root-relative depth estimation, thus improving the accuracy of absolute 3D pose. Comprehensive experiments on challenging benchmarks including MuPoTS-3D and Panoptic clearly verify the superiority of our framework, which outperforms the state-of-the-art bottom-up absolute 3D pose estimation methods.
单阶段就足够了:多人绝对3D姿势估计
现有的多人绝对三维姿态估计方法主要基于自顶向下或自底向上两阶段范式,导致管道冗余,计算成本高。我们认为,将这种两阶段范式简化为单阶段范式以提高效率和性能是更可取的。为此,我们提出了一个有效的单阶段解决方案,解耦回归模型(DRM),具有三个不同的新颖之处。首先,DRM引入了一种新的三维姿态解耦表示,通过二维中心点(可见关键点的中心)和根点(表示为骨盆)分别表示每个三维人体实例的图像平面和深度信息中的二维姿态。其次,为了更好地学习人体深度回归的特征表示,DRM引入了2D位姿引导深度查询模块(PDQM),提取2D位姿回归分支中的特征,使深度回归分支能够感知实例的尺度信息。第三,DRM利用解耦的绝对姿态损失(DAPL)来实现绝对根深度和根相对深度的估计,从而提高了绝对三维姿态的精度。在具有挑战性的基准测试(包括MuPoTS-3D和Panoptic)上进行的综合实验清楚地验证了我们的框架的优越性,它优于最先进的自下而上的绝对3D姿态估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信