Holistic Urdu Handwritten Word Recognition Using Support Vector Machine

M. W. Sagheer, C. He, N. Nobile, C. Suen
{"title":"Holistic Urdu Handwritten Word Recognition Using Support Vector Machine","authors":"M. W. Sagheer, C. He, N. Nobile, C. Suen","doi":"10.1109/ICPR.2010.468","DOIUrl":null,"url":null,"abstract":"Since the Urdu language has more isolated letters than Arabic and Farsi, a research on Urdu handwritten word is desired. This is a novel approach to use the compound features and a Support Vector Machine (SVM) in offline Urdu word recognition. Due to the cursive style in Urdu, a classification using a holistic approach is adapted efficiently. Compound feature sets, which involves in structural and gradient features (directional features), are extracted on each Urdu word. Experiments have been conducted on the CENPARMI Urdu Words Database, and a high recognition accuracy of 97.00% has been achieved.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Since the Urdu language has more isolated letters than Arabic and Farsi, a research on Urdu handwritten word is desired. This is a novel approach to use the compound features and a Support Vector Machine (SVM) in offline Urdu word recognition. Due to the cursive style in Urdu, a classification using a holistic approach is adapted efficiently. Compound feature sets, which involves in structural and gradient features (directional features), are extracted on each Urdu word. Experiments have been conducted on the CENPARMI Urdu Words Database, and a high recognition accuracy of 97.00% has been achieved.
整体乌尔都语手写字识别使用支持向量机
由于乌尔都语比阿拉伯语和波斯语有更多的孤立字母,因此有必要对乌尔都语手写体进行研究。这是一种将复合特征与支持向量机(SVM)相结合用于离线乌尔都语词识别的新方法。由于乌尔都语的草书风格,使用整体方法进行分类是有效的。对每个乌尔都语词提取复合特征集,包括结构特征和梯度特征(方向特征)。在CENPARMI乌尔都语数据库上进行了实验,获得了97.00%的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信