RITUAL: a Platform Quantifying the Trustworthiness of Supervised Machine Learning

Alberto Huertas Celdrán, Jan Bauer, Melike Demirci, Joel Leupp, M. Franco, Pedro Miguel Sánchez Sánchez, Gérôme Bovet, G. Pérez, B. Stiller
{"title":"RITUAL: a Platform Quantifying the Trustworthiness of Supervised Machine Learning","authors":"Alberto Huertas Celdrán, Jan Bauer, Melike Demirci, Joel Leupp, M. Franco, Pedro Miguel Sánchez Sánchez, Gérôme Bovet, G. Pérez, B. Stiller","doi":"10.23919/CNSM55787.2022.9965139","DOIUrl":null,"url":null,"abstract":"This demo presents RITUAL, a platform composed of a novel algorithm and a Web application quantifying the trustworthiness level of supervised Machine and Deep Learning (ML/DL) models according to their fairness, explainability, robustness, and accountability. The algorithm is deployed on a Web application to allow users to quantify and compare the trustworthiness of their ML/DL models. Finally, a scenario with ML/DL models classifying network cyberattacks demonstrates the platform applicability.","PeriodicalId":232521,"journal":{"name":"2022 18th International Conference on Network and Service Management (CNSM)","volume":"17 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM55787.2022.9965139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This demo presents RITUAL, a platform composed of a novel algorithm and a Web application quantifying the trustworthiness level of supervised Machine and Deep Learning (ML/DL) models according to their fairness, explainability, robustness, and accountability. The algorithm is deployed on a Web application to allow users to quantify and compare the trustworthiness of their ML/DL models. Finally, a scenario with ML/DL models classifying network cyberattacks demonstrates the platform applicability.
仪式:一个量化监督机器学习可信度的平台
这个演示展示了RITUAL,一个由新算法和Web应用程序组成的平台,根据其公平性、可解释性、鲁棒性和可问责性来量化监督机器和深度学习(ML/DL)模型的可信度水平。该算法部署在Web应用程序上,允许用户量化和比较其ML/DL模型的可信度。最后,使用ML/DL模型对网络攻击进行分类的场景验证了该平台的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信