{"title":"Urban Local Climate Zone Classification with a Residual Convolutional Neural Network and Multi-Seasonal Sentinel-2 Images","authors":"C. Qiu, M. Schmitt, Lichao Mou, Xiaoxiang Zhu","doi":"10.1109/PRRS.2018.8486155","DOIUrl":null,"url":null,"abstract":"This study presents a classification framework for the urban Local Climate Zones (LCZs) based on a Residual Convolutional Neural Network (ResNet) architecture. In order to make full use of the temporal and spectral information contained in modern Earth observation data, multi-seasonal Sentinel-2 images are exploited. After training the ResNet, independent predictions are made from the multi-seasonal images. Subsequently, the seasonal predictions are fused in a decision fusion step based on majority voting. A systematical experiment is carried out in a large-scale study area located in the center of Europe. A significant accuracy improvement can be achieved by applying majority voting on multi-seasonal predictions. Based on the results, the main challenges and possible solutions of urban LCZ classification are further discussed, providing guidance for large-scale urban LCZ mapping.","PeriodicalId":197319,"journal":{"name":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"43 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRRS.2018.8486155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This study presents a classification framework for the urban Local Climate Zones (LCZs) based on a Residual Convolutional Neural Network (ResNet) architecture. In order to make full use of the temporal and spectral information contained in modern Earth observation data, multi-seasonal Sentinel-2 images are exploited. After training the ResNet, independent predictions are made from the multi-seasonal images. Subsequently, the seasonal predictions are fused in a decision fusion step based on majority voting. A systematical experiment is carried out in a large-scale study area located in the center of Europe. A significant accuracy improvement can be achieved by applying majority voting on multi-seasonal predictions. Based on the results, the main challenges and possible solutions of urban LCZ classification are further discussed, providing guidance for large-scale urban LCZ mapping.