Summarizing Surveillance Video by Saliency Transition and Moving Object Information

M. Salehin, M. Paul
{"title":"Summarizing Surveillance Video by Saliency Transition and Moving Object Information","authors":"M. Salehin, M. Paul","doi":"10.1109/DICTA.2015.7371311","DOIUrl":null,"url":null,"abstract":"Everyday an enormous amount of video is captured by surveillance system for various purposes around the whole world. However, this is almost impossible for human to analyze the vast majority of video data. In this paper, a video summarization method is introduced combining foreground object, motion, and visual attention cue. Foreground objects typically provide important information about video contents. Additionally, object motion is naturally more attractive to human being. Moreover, visual attention cue indicates the human's attraction label for key frame determination. Using these features, supervised classifier support vector machine (SVM) is applied to obtain the key frames from a surveillance video. Extensive experimental results show that the proposed method performs superior to the state-of-the-art method using publicly available BL-7F surveillance video dataset.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"58 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Everyday an enormous amount of video is captured by surveillance system for various purposes around the whole world. However, this is almost impossible for human to analyze the vast majority of video data. In this paper, a video summarization method is introduced combining foreground object, motion, and visual attention cue. Foreground objects typically provide important information about video contents. Additionally, object motion is naturally more attractive to human being. Moreover, visual attention cue indicates the human's attraction label for key frame determination. Using these features, supervised classifier support vector machine (SVM) is applied to obtain the key frames from a surveillance video. Extensive experimental results show that the proposed method performs superior to the state-of-the-art method using publicly available BL-7F surveillance video dataset.
基于显著性过渡和运动目标信息的监控视频总结
每天都有大量的视频被世界各地的监控系统捕获,用于各种目的。然而,对于人类来说,分析绝大多数视频数据几乎是不可能的。本文提出了一种结合前景对象、运动和视觉注意线索的视频摘要方法。前景对象通常提供有关视频内容的重要信息。此外,物体的运动自然更吸引人。此外,视觉注意线索表明人类的吸引力标签,以确定关键帧。利用这些特征,应用监督分类器支持向量机(SVM)从监控视频中获取关键帧。大量的实验结果表明,所提出的方法优于使用公开可用的BL-7F监控视频数据集的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信