Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions

Carlos E. Arreche, T. Dreyfus, J. Roques
{"title":"Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions","authors":"Carlos E. Arreche, T. Dreyfus, J. Roques","doi":"10.5802/JEP.143","DOIUrl":null,"url":null,"abstract":"We develop general criteria that ensure that any non-zero solution of a given second-order difference equation is differentially transcendental, which apply uniformly in particular cases of interest, such as shift difference equations, q-dilation difference equations, Mahler difference equations, and elliptic difference equations. These criteria are obtained as an application of differential Galois theory for difference equations. We apply our criteria to prove a new result to the effect that most elliptic hypergeometric functions are differentially transcendental.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"43 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We develop general criteria that ensure that any non-zero solution of a given second-order difference equation is differentially transcendental, which apply uniformly in particular cases of interest, such as shift difference equations, q-dilation difference equations, Mahler difference equations, and elliptic difference equations. These criteria are obtained as an application of differential Galois theory for difference equations. We apply our criteria to prove a new result to the effect that most elliptic hypergeometric functions are differentially transcendental.
二阶线性差分方程和椭圆型超几何函数的微分超越准则
我们开发了一般的准则,以确保给定二阶差分方程的任何非零解是微分超越的,这些准则一致地适用于特定的情况,如移位差分方程,q-膨胀差分方程,马勒差分方程和椭圆差分方程。这些判据是微分伽罗瓦理论在差分方程中的应用。应用该判据证明了大多数椭圆型超几何函数是微分超越的一个新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信