Deep Learning approach for text, image, and GIF multimodal sentiment analysis

Amirhossein Shirzad, Hadi Zare, M. Teimouri
{"title":"Deep Learning approach for text, image, and GIF multimodal sentiment analysis","authors":"Amirhossein Shirzad, Hadi Zare, M. Teimouri","doi":"10.1109/ICCKE50421.2020.9303676","DOIUrl":null,"url":null,"abstract":"Recently, social media users are increasingly using visual media like GIFs, videos and images as powerful means of expressing their emotions and sentiments. We created a multimodal sentiment analysis tool for different forms of tweets in Python to compute the sentiment score not only base on the tweet's text, but also to consider GIFs and images to gain better accuracy for the tweet's overall sentiment score. For image sentiment, we use fine-tuned CNN, for texts we use VADER, and for the GIFs we apply both image sentiment and facial expression analysis in every frame of the file. In our work, we demonstrate that by utilizing both textual and image features we can achieve better results compared to other models that only rely on either images or text features. The final sentiment score for the incoming tweets will be calculated by aggregating the output scores obtained from each of our text, image, and GIF modules.","PeriodicalId":402043,"journal":{"name":"2020 10th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"32 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE50421.2020.9303676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, social media users are increasingly using visual media like GIFs, videos and images as powerful means of expressing their emotions and sentiments. We created a multimodal sentiment analysis tool for different forms of tweets in Python to compute the sentiment score not only base on the tweet's text, but also to consider GIFs and images to gain better accuracy for the tweet's overall sentiment score. For image sentiment, we use fine-tuned CNN, for texts we use VADER, and for the GIFs we apply both image sentiment and facial expression analysis in every frame of the file. In our work, we demonstrate that by utilizing both textual and image features we can achieve better results compared to other models that only rely on either images or text features. The final sentiment score for the incoming tweets will be calculated by aggregating the output scores obtained from each of our text, image, and GIF modules.
用于文本、图像和GIF多模态情感分析的深度学习方法
最近,社交媒体用户越来越多地使用gif、视频和图像等视觉媒体作为表达情感和情感的有力手段。我们在Python中为不同形式的推文创建了一个多模态情感分析工具,不仅基于推文的文本计算情感得分,还考虑了gif和图像,以获得推文整体情感得分的更高准确性。对于图像情感,我们使用微调的CNN,对于文本,我们使用VADER,对于gif,我们在文件的每一帧中应用图像情感和面部表情分析。在我们的工作中,我们证明了通过同时使用文本和图像特征,与仅依赖图像或文本特征的其他模型相比,我们可以获得更好的结果。输入tweet的最终情感得分将通过汇总从每个文本、图像和GIF模块获得的输出分数来计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信