Reinforcement Learning based ROI Bit Allocation for Gaming Video Coding in VVC

Guangjie Ren, Zizheng Liu, Zhenzhong Chen, Shan Liu
{"title":"Reinforcement Learning based ROI Bit Allocation for Gaming Video Coding in VVC","authors":"Guangjie Ren, Zizheng Liu, Zhenzhong Chen, Shan Liu","doi":"10.1109/VCIP53242.2021.9675345","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a reinforcement learning based region of interest (ROI) bit allocation method for gaming video coding in Versatile Video Coding (VVC). Most current ROI-based bit allocation methods rely on bit budgets based on frame-level empirical weight allocation. The restricted bit budgets influence the efficiency of ROI-based bit allocation and the stability of video quality. To address this issue, the bit allocation process of frame and ROI are combined and formulated as a Markov decision process (MDP). A deep reinforcement learning (RL) method is adopted to solve this problem and obtain the appropriate bits of frame and ROI. Our target is to improve the quality of ROI and reduce the frame-level quality fluctuation, whilst satisfying the bit budgets constraint. The RL-based ROI bit allocation method is implemented in the latest video coding standard and verified for gaming video coding. The experimental results demonstrate that the proposed method achieves a better quality of ROI while reducing the quality fluctuation compared to the reference methods.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"15 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a reinforcement learning based region of interest (ROI) bit allocation method for gaming video coding in Versatile Video Coding (VVC). Most current ROI-based bit allocation methods rely on bit budgets based on frame-level empirical weight allocation. The restricted bit budgets influence the efficiency of ROI-based bit allocation and the stability of video quality. To address this issue, the bit allocation process of frame and ROI are combined and formulated as a Markov decision process (MDP). A deep reinforcement learning (RL) method is adopted to solve this problem and obtain the appropriate bits of frame and ROI. Our target is to improve the quality of ROI and reduce the frame-level quality fluctuation, whilst satisfying the bit budgets constraint. The RL-based ROI bit allocation method is implemented in the latest video coding standard and verified for gaming video coding. The experimental results demonstrate that the proposed method achieves a better quality of ROI while reducing the quality fluctuation compared to the reference methods.
基于强化学习的VVC游戏视频编码ROI位分配
本文提出了一种基于强化学习的兴趣区域(ROI)比特分配方法,用于通用视频编码(VVC)中的游戏视频编码。目前大多数基于roi的比特分配方法依赖于基于帧级经验权重分配的比特预算。有限的比特预算影响了基于roi的比特分配效率和视频质量的稳定性。为了解决这一问题,将帧和ROI的比特分配过程结合起来,形成马尔可夫决策过程(MDP)。采用深度强化学习(RL)方法解决了这一问题,获得了合适的帧位和ROI。我们的目标是提高ROI的质量,减少帧级质量波动,同时满足比特预算约束。在最新的视频编码标准中实现了基于rl的ROI位分配方法,并对游戏视频编码进行了验证。实验结果表明,与参考方法相比,该方法在降低ROI质量波动的同时获得了更好的ROI质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信