Performance based pruning and weighted voting with classification ensembles

M. Amasyali, O. Ersoy
{"title":"Performance based pruning and weighted voting with classification ensembles","authors":"M. Amasyali, O. Ersoy","doi":"10.1109/SIU.2011.5929620","DOIUrl":null,"url":null,"abstract":"Ensemble algorithms have been a very popular research topic because of their high performances. In this work, performance based ensemble pruning and decision weighting methods are investigated on 3 ensemble algorithms (Bagging, Random Subspaces, Random Forest) over 26 classification datasets. According to our experiments; the algorithm including most diversity among its base learners is Random Subspaces. The best performed ensemble algorithm is Random Subspaces with decision weighting.","PeriodicalId":114797,"journal":{"name":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","volume":"34 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2011.5929620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ensemble algorithms have been a very popular research topic because of their high performances. In this work, performance based ensemble pruning and decision weighting methods are investigated on 3 ensemble algorithms (Bagging, Random Subspaces, Random Forest) over 26 classification datasets. According to our experiments; the algorithm including most diversity among its base learners is Random Subspaces. The best performed ensemble algorithm is Random Subspaces with decision weighting.
基于性能的分类集成剪枝和加权投票
集成算法因其高性能而成为一个非常受欢迎的研究课题。在这项工作中,研究了基于性能的集成修剪和决策加权方法在26个分类数据集上的3种集成算法(Bagging, Random Subspaces, Random Forest)。根据我们的实验;在其基础学习器中包含最多多样性的算法是随机子空间。表现最好的集成算法是带有决策加权的随机子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信