Semiconductor Power Module Current Balancing Using Reinforcement Machine Learning

B. Westmoreland, A. Bilbao, S. Bayne
{"title":"Semiconductor Power Module Current Balancing Using Reinforcement Machine Learning","authors":"B. Westmoreland, A. Bilbao, S. Bayne","doi":"10.1109/PPC40517.2021.9733124","DOIUrl":null,"url":null,"abstract":"In high power applications, semiconductor power modules containing paralleled MOSFETs are often used to achieve high output currents. The current distribution between devices within a module is influenced by several factors such as component layout, minor defects due to manufacturing tolerances, and general devices degradation that occurs over time. This paper describes a method of balancing the current between paralleled MOSFETs by independently modulating each device’s gate-to-source voltage and measuring the corresponding drain-to-source currents. To achieve this, a detailed simulation is created using MATLAB and Simulink. A reinforcement learning agent is implemented with the goal of adaptively balancing power module current as the components inside degrade over time.","PeriodicalId":307571,"journal":{"name":"2021 IEEE Pulsed Power Conference (PPC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Pulsed Power Conference (PPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC40517.2021.9733124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In high power applications, semiconductor power modules containing paralleled MOSFETs are often used to achieve high output currents. The current distribution between devices within a module is influenced by several factors such as component layout, minor defects due to manufacturing tolerances, and general devices degradation that occurs over time. This paper describes a method of balancing the current between paralleled MOSFETs by independently modulating each device’s gate-to-source voltage and measuring the corresponding drain-to-source currents. To achieve this, a detailed simulation is created using MATLAB and Simulink. A reinforcement learning agent is implemented with the goal of adaptively balancing power module current as the components inside degrade over time.
基于强化机器学习的半导体功率模块电流平衡
在高功率应用中,包含并联mosfet的半导体功率模块通常用于实现高输出电流。模块内器件之间的电流分布受到几个因素的影响,例如元件布局、由于制造公差引起的小缺陷以及随着时间的推移而发生的一般器件退化。本文描述了一种通过独立调制每个器件的栅源电压并测量相应的漏源电流来平衡并联mosfet之间电流的方法。为了实现这一点,使用MATLAB和Simulink创建了详细的仿真。实现了一个强化学习代理,其目标是自适应平衡电源模块电流,因为内部组件随着时间的推移而退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信