{"title":"Semiconductor Power Module Current Balancing Using Reinforcement Machine Learning","authors":"B. Westmoreland, A. Bilbao, S. Bayne","doi":"10.1109/PPC40517.2021.9733124","DOIUrl":null,"url":null,"abstract":"In high power applications, semiconductor power modules containing paralleled MOSFETs are often used to achieve high output currents. The current distribution between devices within a module is influenced by several factors such as component layout, minor defects due to manufacturing tolerances, and general devices degradation that occurs over time. This paper describes a method of balancing the current between paralleled MOSFETs by independently modulating each device’s gate-to-source voltage and measuring the corresponding drain-to-source currents. To achieve this, a detailed simulation is created using MATLAB and Simulink. A reinforcement learning agent is implemented with the goal of adaptively balancing power module current as the components inside degrade over time.","PeriodicalId":307571,"journal":{"name":"2021 IEEE Pulsed Power Conference (PPC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Pulsed Power Conference (PPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC40517.2021.9733124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In high power applications, semiconductor power modules containing paralleled MOSFETs are often used to achieve high output currents. The current distribution between devices within a module is influenced by several factors such as component layout, minor defects due to manufacturing tolerances, and general devices degradation that occurs over time. This paper describes a method of balancing the current between paralleled MOSFETs by independently modulating each device’s gate-to-source voltage and measuring the corresponding drain-to-source currents. To achieve this, a detailed simulation is created using MATLAB and Simulink. A reinforcement learning agent is implemented with the goal of adaptively balancing power module current as the components inside degrade over time.