Interpreting random forest models using a feature contribution method

Anna Palczewska, Jan Palczewski, R. M. Robinson, D. Neagu
{"title":"Interpreting random forest models using a feature contribution method","authors":"Anna Palczewska, Jan Palczewski, R. M. Robinson, D. Neagu","doi":"10.1109/IRI.2013.6642461","DOIUrl":null,"url":null,"abstract":"Model interpretation is one of the key aspects of the model evaluation process. The explanation of the relationship between model variables and outputs is easy for statistical models, such as linear regressions, thanks to the availability of model parameters and their statistical significance. For “black box” models, such as random forest, this information is hidden inside the model structure. This work presents an approach for computing feature contributions for random forest classification models. It allows for the determination of the influence of each variable on the model prediction for an individual instance. Interpretation of feature contributions for two UCI benchmark datasets shows the potential of the proposed methodology. The robustness of results is demonstrated through an extensive analysis of feature contributions calculated for a large number of generated random forest models.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"6 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

Model interpretation is one of the key aspects of the model evaluation process. The explanation of the relationship between model variables and outputs is easy for statistical models, such as linear regressions, thanks to the availability of model parameters and their statistical significance. For “black box” models, such as random forest, this information is hidden inside the model structure. This work presents an approach for computing feature contributions for random forest classification models. It allows for the determination of the influence of each variable on the model prediction for an individual instance. Interpretation of feature contributions for two UCI benchmark datasets shows the potential of the proposed methodology. The robustness of results is demonstrated through an extensive analysis of feature contributions calculated for a large number of generated random forest models.
用特征贡献法解释随机森林模型
模型解释是模型评价过程中的关键环节之一。由于模型参数的可用性及其统计显著性,对于统计模型(如线性回归)来说,解释模型变量与输出之间的关系很容易。对于“黑盒”模型,例如随机森林,这些信息隐藏在模型结构中。这项工作提出了一种计算随机森林分类模型特征贡献的方法。它允许确定每个变量对单个实例的模型预测的影响。对两个UCI基准数据集的特征贡献的解释显示了所提出方法的潜力。通过对大量生成的随机森林模型计算的特征贡献的广泛分析,证明了结果的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信