{"title":"Dual Denoising Autoencoder Feature Learning for Cancer Diagnosis","authors":"Yuqing Gao, Wing W. Y. Ng, Ting Wang, S. Kwong","doi":"10.1109/ICCICC46617.2019.9146039","DOIUrl":null,"url":null,"abstract":"Microarray data analysis has emerged as a strong tool for cancer diagnosis. Nevertheless, researches on it are significantly challenging as the microarray datasets are imbalanced and high-dimensional with relatively small sample size. In this paper, we utilized Dual Denoising Autoencoder Features (DDAF), which integrates two Denoising Auto-Encoders (DAE) with different activation function to map the features for both minority and majority classes into a better classification representation. The experimental results on four typical microarray datasets show that the DDAF outperforms the Dual Autoencoder Features (DAF) and the Cost-sensitive Oversampling Stacked Denoising Auto-Encoder (CO-SDAE), rendering the robust ability for dimensionality reduction and imbalanced classification.","PeriodicalId":294902,"journal":{"name":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"35 3-4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC46617.2019.9146039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microarray data analysis has emerged as a strong tool for cancer diagnosis. Nevertheless, researches on it are significantly challenging as the microarray datasets are imbalanced and high-dimensional with relatively small sample size. In this paper, we utilized Dual Denoising Autoencoder Features (DDAF), which integrates two Denoising Auto-Encoders (DAE) with different activation function to map the features for both minority and majority classes into a better classification representation. The experimental results on four typical microarray datasets show that the DDAF outperforms the Dual Autoencoder Features (DAF) and the Cost-sensitive Oversampling Stacked Denoising Auto-Encoder (CO-SDAE), rendering the robust ability for dimensionality reduction and imbalanced classification.