A Novel Recurrent Neural Network for Dynamic Process Modeling with Inertia and Delay

Lin Gao, Pan Zhao, Lin Wang, Haidong Gao, Yaokui Gao, Ming Liu
{"title":"A Novel Recurrent Neural Network for Dynamic Process Modeling with Inertia and Delay","authors":"Lin Gao, Pan Zhao, Lin Wang, Haidong Gao, Yaokui Gao, Ming Liu","doi":"10.1109/DTPI55838.2022.9998948","DOIUrl":null,"url":null,"abstract":"A novel continuous-time multi-layer Recurrent Neural Network (RNN) is presented in this paper. The proposed RNN struture has superiorities of simple structure and parameters with certain physical meanings. A four-neuron dynamic neural network was used to model the water spray desuperheating control system. The test results show that the proposed RNN sturture has good adaptability to the physical process with large inertia and large delay effects.","PeriodicalId":409822,"journal":{"name":"2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI)","volume":"34 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTPI55838.2022.9998948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel continuous-time multi-layer Recurrent Neural Network (RNN) is presented in this paper. The proposed RNN struture has superiorities of simple structure and parameters with certain physical meanings. A four-neuron dynamic neural network was used to model the water spray desuperheating control system. The test results show that the proposed RNN sturture has good adaptability to the physical process with large inertia and large delay effects.
一种新的递归神经网络用于具有惯性和延迟的动态过程建模
提出了一种新的连续多层递归神经网络(RNN)。所提出的RNN结构具有结构简单、参数具有一定物理意义等优点。采用四神经元动态神经网络对水雾降温控制系统进行建模。实验结果表明,所提出的RNN结构对具有大惯性和大延迟效应的物理过程具有良好的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信