{"title":"Relative perversity","authors":"David Hansen, P. Scholze","doi":"10.1090/cams/21","DOIUrl":null,"url":null,"abstract":"<p>We define and study a relative perverse <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\n <mml:semantics>\n <mml:mi>t</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-structure associated with any finitely presented morphism of schemes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper X right-arrow upper S\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>S</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f: X\\to S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, with relative perversity equivalent to perversity of the restrictions to all geometric fibres of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The existence of this <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\n <mml:semantics>\n <mml:mi>t</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-structure is closely related to perverse <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\n <mml:semantics>\n <mml:mi>t</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-exactness properties of nearby cycles. This <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\n <mml:semantics>\n <mml:mi>t</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-structure preserves universally locally acyclic sheaves, and one gets a resulting abelian category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal e normal r normal v Superscript normal upper U normal upper L normal upper A Baseline left-parenthesis upper X slash upper S right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">U</mml:mi>\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {Perv}^{\\mathrm {ULA}}(X/S)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with many of the same properties familiar in the absolute setting (e.g., noetherian, artinian, compatible with Verdier duality). For <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\n <mml:semantics>\n <mml:mi>S</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> connected and geometrically unibranch with generic point <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"eta\">\n <mml:semantics>\n <mml:mi>η<!-- η --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\eta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the functor <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal e normal r normal v Superscript normal upper U normal upper L normal upper A Baseline left-parenthesis upper X slash upper S right-parenthesis right-arrow normal upper P normal e normal r normal v left-parenthesis upper X Subscript eta Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">U</mml:mi>\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>η<!-- η --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {Perv}^{\\mathrm {ULA}}(X/S)\\to \\mathrm {Perv}(X_\\eta )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is exact and fully faithful, and its essential image is stable under passage to subquotients. This yields a notion of “good reduction” for perverse sheaves.</p>","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"47 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We define and study a relative perverse tt-structure associated with any finitely presented morphism of schemes f:X→Sf: X\to S, with relative perversity equivalent to perversity of the restrictions to all geometric fibres of ff. The existence of this tt-structure is closely related to perverse tt-exactness properties of nearby cycles. This tt-structure preserves universally locally acyclic sheaves, and one gets a resulting abelian category PervULA(X/S)\mathrm {Perv}^{\mathrm {ULA}}(X/S) with many of the same properties familiar in the absolute setting (e.g., noetherian, artinian, compatible with Verdier duality). For SS connected and geometrically unibranch with generic point η\eta, the functor PervULA(X/S)→Perv(Xη)\mathrm {Perv}^{\mathrm {ULA}}(X/S)\to \mathrm {Perv}(X_\eta ) is exact and fully faithful, and its essential image is stable under passage to subquotients. This yields a notion of “good reduction” for perverse sheaves.