Relative perversity

David Hansen, P. Scholze
{"title":"Relative perversity","authors":"David Hansen, P. Scholze","doi":"10.1090/cams/21","DOIUrl":null,"url":null,"abstract":"<p>We define and study a relative perverse <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\n <mml:semantics>\n <mml:mi>t</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-structure associated with any finitely presented morphism of schemes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper X right-arrow upper S\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>S</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f: X\\to S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, with relative perversity equivalent to perversity of the restrictions to all geometric fibres of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The existence of this <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\n <mml:semantics>\n <mml:mi>t</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-structure is closely related to perverse <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\n <mml:semantics>\n <mml:mi>t</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-exactness properties of nearby cycles. This <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\n <mml:semantics>\n <mml:mi>t</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-structure preserves universally locally acyclic sheaves, and one gets a resulting abelian category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal e normal r normal v Superscript normal upper U normal upper L normal upper A Baseline left-parenthesis upper X slash upper S right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">U</mml:mi>\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {Perv}^{\\mathrm {ULA}}(X/S)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with many of the same properties familiar in the absolute setting (e.g., noetherian, artinian, compatible with Verdier duality). For <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\n <mml:semantics>\n <mml:mi>S</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> connected and geometrically unibranch with generic point <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"eta\">\n <mml:semantics>\n <mml:mi>η<!-- η --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\eta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the functor <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal e normal r normal v Superscript normal upper U normal upper L normal upper A Baseline left-parenthesis upper X slash upper S right-parenthesis right-arrow normal upper P normal e normal r normal v left-parenthesis upper X Subscript eta Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">U</mml:mi>\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>η<!-- η --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {Perv}^{\\mathrm {ULA}}(X/S)\\to \\mathrm {Perv}(X_\\eta )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is exact and fully faithful, and its essential image is stable under passage to subquotients. This yields a notion of “good reduction” for perverse sheaves.</p>","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"47 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define and study a relative perverse t t -structure associated with any finitely presented morphism of schemes f : X S f: X\to S , with relative perversity equivalent to perversity of the restrictions to all geometric fibres of f f . The existence of this t t -structure is closely related to perverse t t -exactness properties of nearby cycles. This t t -structure preserves universally locally acyclic sheaves, and one gets a resulting abelian category P e r v U L A ( X / S ) \mathrm {Perv}^{\mathrm {ULA}}(X/S) with many of the same properties familiar in the absolute setting (e.g., noetherian, artinian, compatible with Verdier duality). For S S connected and geometrically unibranch with generic point η \eta , the functor P e r v U L A ( X / S ) P e r v ( X η ) \mathrm {Perv}^{\mathrm {ULA}}(X/S)\to \mathrm {Perv}(X_\eta ) is exact and fully faithful, and its essential image is stable under passage to subquotients. This yields a notion of “good reduction” for perverse sheaves.

相对任性
我们定义并研究了与任意有限表示的格式f: X→S f: X\to S相关的相对反常t -结构,其相对反常等价于对f的所有几何纤维的限制反常。这种t - t结构的存在与邻近环的反常t - t -精确性质密切相关。这个t - t -结构保留了普遍的局部无环轴,得到了一个阿贝尔范畴Perv UL a (X/S) \mathrm {Perv}^{\mathrm {ULA}}(X/S),它具有许多在绝对环境中熟悉的性质(例如,诺etherian, artinian,与Verdier对偶相容)。对于S S连通且具有一般点η \eta的几何单分支,函子Perv ULA (X/S)→Perv (X η)\ mathrm {Perv}^{\mathrm {ULA}}(X/S)\到\mathrm {Perv}(X_\eta)是精确的、完全忠实的,其本质象在传递到子商时是稳定的。这就产生了一个“良好减少”的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信