PhD forum: Dempster-Shafer based camera contribution evaluation for task assignment in vision networks

M. Morbée, L. Tessens, W. Philips, H. Aghajan
{"title":"PhD forum: Dempster-Shafer based camera contribution evaluation for task assignment in vision networks","authors":"M. Morbée, L. Tessens, W. Philips, H. Aghajan","doi":"10.1109/ICDSC.2009.5289389","DOIUrl":null,"url":null,"abstract":"In a network of cameras, it is important that the right subset of cameras takes care of the right task. In this work, we describe a general framework to evaluate the contribution of subsets of cameras to a task. Each task is the observation of an event of interest and consists of assessing the validity of a set of hypotheses. All cameras gather evidence for those hypotheses. The evidence from different cameras is fused by using the Dempster-Shafer theory of evidence. After combining the evidence for a set of cameras, the remaining uncertainty about a set of hypotheses, allows us to identify how well a certain camera subset is suited for a certain task. Taking into account these subset contribution values, we can determine in an efficient way the set of subset-task assignments that yields the best overall task performance.","PeriodicalId":324810,"journal":{"name":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2009.5289389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a network of cameras, it is important that the right subset of cameras takes care of the right task. In this work, we describe a general framework to evaluate the contribution of subsets of cameras to a task. Each task is the observation of an event of interest and consists of assessing the validity of a set of hypotheses. All cameras gather evidence for those hypotheses. The evidence from different cameras is fused by using the Dempster-Shafer theory of evidence. After combining the evidence for a set of cameras, the remaining uncertainty about a set of hypotheses, allows us to identify how well a certain camera subset is suited for a certain task. Taking into account these subset contribution values, we can determine in an efficient way the set of subset-task assignments that yields the best overall task performance.
博士论坛:基于Dempster-Shafer的视觉网络任务分配的相机贡献评估
在摄像机网络中,重要的是由正确的摄像机子集来处理正确的任务。在这项工作中,我们描述了一个通用框架来评估相机子集对任务的贡献。每个任务都是观察一个感兴趣的事件,包括评估一组假设的有效性。所有的摄像头都会为这些假设收集证据。使用邓普斯特-谢弗证据理论将来自不同摄像机的证据融合在一起。在结合了一组相机的证据之后,关于一组假设的剩余不确定性,使我们能够确定特定相机子集适合特定任务的程度。考虑到这些子集贡献值,我们可以以一种有效的方式确定产生最佳总体任务性能的子集任务分配集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信