Rémi Delassus, R. Giot, Raphael Cherrier, Gabriele Barbieri, Guy Melançon
{"title":"Broken bikes detection using CitiBike bikeshare system open data","authors":"Rémi Delassus, R. Giot, Raphael Cherrier, Gabriele Barbieri, Guy Melançon","doi":"10.1109/SSCI.2016.7850091","DOIUrl":null,"url":null,"abstract":"It seems necessary to detect a broken bike rooted at a station in near realtime as the number of bikes within bikeshare systems has reached more than a million in 2015. Indeed, a bike that cannot be moved is not cost effective in terms of number of trips. This brings frustration to users who were expecting to find a bike at that station without knowing that it is actually defective. We thus propose a methodology from feature extraction to anomaly detection on a distributed cloud infrastructure in order to detect bicycles requiring a repair. Through a first step of K-means clustering, and a second step consisting of spotting samples that do not clearly belong to any cluster, we separate anomalies from normal behaviors. The proposal is validated on a publicly available dataset provided by Motivate, the operator of the New-York bikeshare system. The number of distinct bikes that have been classified by this algorithm as broken at least once during a month is close to the number of repairs given in monthly reports of Motivate.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7850091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
It seems necessary to detect a broken bike rooted at a station in near realtime as the number of bikes within bikeshare systems has reached more than a million in 2015. Indeed, a bike that cannot be moved is not cost effective in terms of number of trips. This brings frustration to users who were expecting to find a bike at that station without knowing that it is actually defective. We thus propose a methodology from feature extraction to anomaly detection on a distributed cloud infrastructure in order to detect bicycles requiring a repair. Through a first step of K-means clustering, and a second step consisting of spotting samples that do not clearly belong to any cluster, we separate anomalies from normal behaviors. The proposal is validated on a publicly available dataset provided by Motivate, the operator of the New-York bikeshare system. The number of distinct bikes that have been classified by this algorithm as broken at least once during a month is close to the number of repairs given in monthly reports of Motivate.