{"title":"Streamlining the Genomics Processing Pipeline via Named Pipes and Persistent Spark Satasets","authors":"W. Blair, L. Joao, Larry Davis, Paul E. Anderson","doi":"10.1109/BIBE.2017.00-82","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the use of Unix named pipes and an in-memory datagrid to reduce the I/O requirements of conventional and exploratory genomics processing pipelines. Apache Spark provides an in-memory framework for distributed computational genomics that has realized significant improvements over conventional pipelines in speed and flexibility. Even in the Spark framework, however, pipeline components create I/O bottlenecks by reading and writing intermediate files that are later discarded. Apache Ignite provides a framework for persisting a Spark dataset in memory between modular pipeline applications, and Unix named pipes have long provided a mechanism by which data can be transferred in-memory. We compared the runtime performance of a standard genomics pipeline that transmits Spark data using named pipes and/or Ignite's in-memory datagrid. Our results demonstrate that Ignite can improve the runtime performance of in-memory RDD actions and that keeping pipeline components in memory with Ignite and named pipes eliminates a major I/O bottleneck.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.00-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we investigate the use of Unix named pipes and an in-memory datagrid to reduce the I/O requirements of conventional and exploratory genomics processing pipelines. Apache Spark provides an in-memory framework for distributed computational genomics that has realized significant improvements over conventional pipelines in speed and flexibility. Even in the Spark framework, however, pipeline components create I/O bottlenecks by reading and writing intermediate files that are later discarded. Apache Ignite provides a framework for persisting a Spark dataset in memory between modular pipeline applications, and Unix named pipes have long provided a mechanism by which data can be transferred in-memory. We compared the runtime performance of a standard genomics pipeline that transmits Spark data using named pipes and/or Ignite's in-memory datagrid. Our results demonstrate that Ignite can improve the runtime performance of in-memory RDD actions and that keeping pipeline components in memory with Ignite and named pipes eliminates a major I/O bottleneck.