Streamlining the Genomics Processing Pipeline via Named Pipes and Persistent Spark Satasets

W. Blair, L. Joao, Larry Davis, Paul E. Anderson
{"title":"Streamlining the Genomics Processing Pipeline via Named Pipes and Persistent Spark Satasets","authors":"W. Blair, L. Joao, Larry Davis, Paul E. Anderson","doi":"10.1109/BIBE.2017.00-82","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the use of Unix named pipes and an in-memory datagrid to reduce the I/O requirements of conventional and exploratory genomics processing pipelines. Apache Spark provides an in-memory framework for distributed computational genomics that has realized significant improvements over conventional pipelines in speed and flexibility. Even in the Spark framework, however, pipeline components create I/O bottlenecks by reading and writing intermediate files that are later discarded. Apache Ignite provides a framework for persisting a Spark dataset in memory between modular pipeline applications, and Unix named pipes have long provided a mechanism by which data can be transferred in-memory. We compared the runtime performance of a standard genomics pipeline that transmits Spark data using named pipes and/or Ignite's in-memory datagrid. Our results demonstrate that Ignite can improve the runtime performance of in-memory RDD actions and that keeping pipeline components in memory with Ignite and named pipes eliminates a major I/O bottleneck.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.00-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we investigate the use of Unix named pipes and an in-memory datagrid to reduce the I/O requirements of conventional and exploratory genomics processing pipelines. Apache Spark provides an in-memory framework for distributed computational genomics that has realized significant improvements over conventional pipelines in speed and flexibility. Even in the Spark framework, however, pipeline components create I/O bottlenecks by reading and writing intermediate files that are later discarded. Apache Ignite provides a framework for persisting a Spark dataset in memory between modular pipeline applications, and Unix named pipes have long provided a mechanism by which data can be transferred in-memory. We compared the runtime performance of a standard genomics pipeline that transmits Spark data using named pipes and/or Ignite's in-memory datagrid. Our results demonstrate that Ignite can improve the runtime performance of in-memory RDD actions and that keeping pipeline components in memory with Ignite and named pipes eliminates a major I/O bottleneck.
通过命名管道和持久Spark数据集简化基因组学处理管道
在本文中,我们研究了Unix命名管道和内存数据网格的使用,以减少传统和探索性基因组处理管道的I/O需求。Apache Spark为分布式计算基因组学提供了一个内存框架,它在速度和灵活性上都比传统的管道有了显著的改进。然而,即使在Spark框架中,管道组件也会因为读写中间文件而造成I/O瓶颈,这些中间文件后来会被丢弃。Apache Ignite提供了一个框架,用于在模块化管道应用程序之间在内存中持久化Spark数据集,Unix命名管道早就提供了一种机制,通过这种机制可以在内存中传输数据。我们比较了使用命名管道和/或Ignite的内存数据网格传输Spark数据的标准基因组学管道的运行时性能。我们的结果表明,Ignite可以提高内存RDD操作的运行时性能,并且使用Ignite和命名管道将管道组件保存在内存中可以消除主要的I/O瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信