{"title":"The Semiotics of Cybernetic Percept-Action Systems","authors":"P. Cariani","doi":"10.4018/ijsss.2011010101","DOIUrl":null,"url":null,"abstract":"In this paper, a semiotic framework for natural and artificial adaptive percept-action systems is presented. The functional organizations and operational structures of percept-action systems with different degrees of adaptivity and self-construction are considered in terms of syntactic, semantic, and pragmatic relations. Operational systems-theoretic criteria for distinguishing semiotic, sign-systems from nonsemiotic physical systems are proposed. A system is semiotic if a set of functional sign-states can be identified, such that the system’s behavior can be effectively described in terms of operations on sign-types. Semiotic relations involved in the operational structure of the observer are outlined and illustrated using the Hertzian commutation diagram. Percept-action systems are observers endowed with effectors that permit them to act on their surrounds. Percept-action systems consist of sensors, effectors, and a coordinative part that determines which actions will be taken. Cybernetic systems adaptively steer behavior by altering percept-action mappings contingent on evaluated performance measures via embedded goals. Self-constructing cybernetic systems use signs to direct the physical construction of all parts of the system to create new syntactic, semantic, and pragmatic relations. When a system gains the ability to construct its material hardware and choose its semiotic relations, it achieves a degree of epistemic autonomy, semantic closure, and pragmatic self-direction.","PeriodicalId":424248,"journal":{"name":"Int. J. Signs Semiot. Syst.","volume":"3 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Signs Semiot. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsss.2011010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
In this paper, a semiotic framework for natural and artificial adaptive percept-action systems is presented. The functional organizations and operational structures of percept-action systems with different degrees of adaptivity and self-construction are considered in terms of syntactic, semantic, and pragmatic relations. Operational systems-theoretic criteria for distinguishing semiotic, sign-systems from nonsemiotic physical systems are proposed. A system is semiotic if a set of functional sign-states can be identified, such that the system’s behavior can be effectively described in terms of operations on sign-types. Semiotic relations involved in the operational structure of the observer are outlined and illustrated using the Hertzian commutation diagram. Percept-action systems are observers endowed with effectors that permit them to act on their surrounds. Percept-action systems consist of sensors, effectors, and a coordinative part that determines which actions will be taken. Cybernetic systems adaptively steer behavior by altering percept-action mappings contingent on evaluated performance measures via embedded goals. Self-constructing cybernetic systems use signs to direct the physical construction of all parts of the system to create new syntactic, semantic, and pragmatic relations. When a system gains the ability to construct its material hardware and choose its semiotic relations, it achieves a degree of epistemic autonomy, semantic closure, and pragmatic self-direction.