Tiziana Veracini, S. Matteoli, M. Diani, G. Corsini, Sergio Ugo de Ceglie
{"title":"A spectral anomaly detector in hyperspectral images based on a non-Gaussian mixture model","authors":"Tiziana Veracini, S. Matteoli, M. Diani, G. Corsini, Sergio Ugo de Ceglie","doi":"10.1109/WHISPERS.2010.5594901","DOIUrl":null,"url":null,"abstract":"Anomaly Detection (AD) in remotely sensed airborne hyperspectral images has been proven valuable in many applications. Within the AD approach that defines the spectral anomalies with respect to a statistical model for the background, reliable background PDF estimation is essential to a successful outcome. This paper proposes a new Bayesian strategy for learning a non-Gaussian mixture model for the background PDF based on elliptically contoured distributions. The resulting estimated background PDF is then used to detect spectral anomalies, characterized by a low probability of occurrence with respect to the global background, through the Generalized Likelihood Ratio Test (GLRT). Real hyperspectral imagery is used for experimental evaluation of the proposed strategy.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"101 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Anomaly Detection (AD) in remotely sensed airborne hyperspectral images has been proven valuable in many applications. Within the AD approach that defines the spectral anomalies with respect to a statistical model for the background, reliable background PDF estimation is essential to a successful outcome. This paper proposes a new Bayesian strategy for learning a non-Gaussian mixture model for the background PDF based on elliptically contoured distributions. The resulting estimated background PDF is then used to detect spectral anomalies, characterized by a low probability of occurrence with respect to the global background, through the Generalized Likelihood Ratio Test (GLRT). Real hyperspectral imagery is used for experimental evaluation of the proposed strategy.