A spectral anomaly detector in hyperspectral images based on a non-Gaussian mixture model

Tiziana Veracini, S. Matteoli, M. Diani, G. Corsini, Sergio Ugo de Ceglie
{"title":"A spectral anomaly detector in hyperspectral images based on a non-Gaussian mixture model","authors":"Tiziana Veracini, S. Matteoli, M. Diani, G. Corsini, Sergio Ugo de Ceglie","doi":"10.1109/WHISPERS.2010.5594901","DOIUrl":null,"url":null,"abstract":"Anomaly Detection (AD) in remotely sensed airborne hyperspectral images has been proven valuable in many applications. Within the AD approach that defines the spectral anomalies with respect to a statistical model for the background, reliable background PDF estimation is essential to a successful outcome. This paper proposes a new Bayesian strategy for learning a non-Gaussian mixture model for the background PDF based on elliptically contoured distributions. The resulting estimated background PDF is then used to detect spectral anomalies, characterized by a low probability of occurrence with respect to the global background, through the Generalized Likelihood Ratio Test (GLRT). Real hyperspectral imagery is used for experimental evaluation of the proposed strategy.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"101 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Anomaly Detection (AD) in remotely sensed airborne hyperspectral images has been proven valuable in many applications. Within the AD approach that defines the spectral anomalies with respect to a statistical model for the background, reliable background PDF estimation is essential to a successful outcome. This paper proposes a new Bayesian strategy for learning a non-Gaussian mixture model for the background PDF based on elliptically contoured distributions. The resulting estimated background PDF is then used to detect spectral anomalies, characterized by a low probability of occurrence with respect to the global background, through the Generalized Likelihood Ratio Test (GLRT). Real hyperspectral imagery is used for experimental evaluation of the proposed strategy.
基于非高斯混合模型的高光谱图像光谱异常检测器
遥感机载高光谱图像的异常检测(AD)已被证明具有广泛的应用价值。在AD方法中,根据背景统计模型定义光谱异常,可靠的背景PDF估计对于成功的结果至关重要。本文提出了一种新的贝叶斯策略,用于学习基于椭圆轮廓分布的背景PDF的非高斯混合模型。然后,通过广义似然比检验(GLRT),将所得的估计背景PDF用于检测光谱异常,其特征是相对于全球背景发生的概率较低。利用真实高光谱图像对所提出的策略进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信