Heuristic rule for truck dispatching in open-pit mines with local information-based decisions

Ariel Arelovich, F. Masson, O. Agamennoni, Stewart Worrall, E. Nebot
{"title":"Heuristic rule for truck dispatching in open-pit mines with local information-based decisions","authors":"Ariel Arelovich, F. Masson, O. Agamennoni, Stewart Worrall, E. Nebot","doi":"10.1109/ITSC.2010.5625231","DOIUrl":null,"url":null,"abstract":"This paper proposes a new algorithm to make real time dispatching decisions in open-pit mines based on discrete position information. New methods are presented to estimate the probability density function for the position of each vehicle across the mine. New heuristic rules are then presented that use current local data gathered by peer to peer communication systems and vehicle position estimates to select the optimal destination and travel plan for each vehicle. A comparison of the algorithm with the existing approaches based on global information of truck position is presented. The results show that the performance improves using the discrete information, and there is significant improvements in the event of accidents or queuing.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"315 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5625231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper proposes a new algorithm to make real time dispatching decisions in open-pit mines based on discrete position information. New methods are presented to estimate the probability density function for the position of each vehicle across the mine. New heuristic rules are then presented that use current local data gathered by peer to peer communication systems and vehicle position estimates to select the optimal destination and travel plan for each vehicle. A comparison of the algorithm with the existing approaches based on global information of truck position is presented. The results show that the performance improves using the discrete information, and there is significant improvements in the event of accidents or queuing.
基于局部信息决策的露天矿卡车调度启发式规则
提出了一种基于离散位置信息的露天矿实时调度决策算法。提出了一种新的估计车辆穿越矿井位置的概率密度函数的方法。然后提出了新的启发式规则,利用点对点通信系统收集的当前本地数据和车辆位置估计来选择每辆车的最佳目的地和旅行计划。将该算法与现有的基于卡车位置全局信息的方法进行了比较。结果表明,离散信息的使用提高了系统的性能,并且在发生事故或排队的情况下有显著的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信