Application of Uranium Mineral Band Feature Sub-set Selection Based on Genetic Algorithm

Yiping Tong, Z. Cai, Jia Wu
{"title":"Application of Uranium Mineral Band Feature Sub-set Selection Based on Genetic Algorithm","authors":"Yiping Tong, Z. Cai, Jia Wu","doi":"10.1109/CICN.2013.137","DOIUrl":null,"url":null,"abstract":"Analyses show that the absorption band position determines the type of mineral radically. The paper proposes a method of applying GA (Genetic Algorithm) to the selection of the uranium mineral band feature sub-set. First, on the fundamental of the correlation between feature-based metrics: information entropy, information gain, symmetrical uncertainty and type space, the GA which is a random search algorithm uses the four standards as fitness functions to select the best feature points. Then set three different sub-intervals, extend the best feature points to the best feature sub-sets. Finally, the best feature sub-sets are used for classification. Experiments show that information gain and symmetrical uncertainty that based on genetic algorithm are better than based on CFS in classification.","PeriodicalId":415274,"journal":{"name":"2013 5th International Conference on Computational Intelligence and Communication Networks","volume":"16 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2013.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analyses show that the absorption band position determines the type of mineral radically. The paper proposes a method of applying GA (Genetic Algorithm) to the selection of the uranium mineral band feature sub-set. First, on the fundamental of the correlation between feature-based metrics: information entropy, information gain, symmetrical uncertainty and type space, the GA which is a random search algorithm uses the four standards as fitness functions to select the best feature points. Then set three different sub-intervals, extend the best feature points to the best feature sub-sets. Finally, the best feature sub-sets are used for classification. Experiments show that information gain and symmetrical uncertainty that based on genetic algorithm are better than based on CFS in classification.
基于遗传算法的铀矿带特征子集选择的应用
分析表明,吸收带的位置从根本上决定了矿物的类型。提出了一种将遗传算法应用于铀矿物带特征子集选择的方法。首先,基于特征度量:信息熵、信息增益、对称不确定性和类型空间之间的相关性,遗传算法作为一种随机搜索算法,使用这四个标准作为适应度函数来选择最佳特征点。然后设置三个不同的子区间,将最佳特征点扩展到最佳特征子集。最后,利用最佳特征子集进行分类。实验表明,基于遗传算法的信息增益和对称不确定性优于基于CFS的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信