Video Surveillance System Based on 3D Action Recognition

Sungjoo Park, Dongchil Kim
{"title":"Video Surveillance System Based on 3D Action Recognition","authors":"Sungjoo Park, Dongchil Kim","doi":"10.1109/ICUFN.2018.8436644","DOIUrl":null,"url":null,"abstract":"Human action recognition using depth-map images from 3D camera for surveillance system is a promising alternative to the conventional 2D video based surveillance. We propose a security-event detection method based on body part classification and human action recognition for more effective video surveillance system. Experimental results show that the body part classification accuracy of 65.0% and security event detection accuracy of 0.878 were achieved for 9 security events.","PeriodicalId":224367,"journal":{"name":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"48 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN.2018.8436644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Human action recognition using depth-map images from 3D camera for surveillance system is a promising alternative to the conventional 2D video based surveillance. We propose a security-event detection method based on body part classification and human action recognition for more effective video surveillance system. Experimental results show that the body part classification accuracy of 65.0% and security event detection accuracy of 0.878 were achieved for 9 security events.
基于三维动作识别的视频监控系统
利用三维摄像机的深度图图像进行人体动作识别是传统的基于二维视频的监控的一种很有前途的替代方案。为了提高视频监控系统的检测效率,提出了一种基于人体部位分类和人体动作识别的安全事件检测方法。实验结果表明,该方法对9个安全事件的身体部位分类准确率为65.0%,安全事件检测准确率为0.878。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信