Glaisa T. Catalan, Michael P. Baldado Jr, Roberto N. Padua
{"title":"βI-Compactness, βI*-Hyperconnectedness and βI-Separatedness in Ideal Topological Spaces","authors":"Glaisa T. Catalan, Michael P. Baldado Jr, Roberto N. Padua","doi":"10.5772/intechopen.101524","DOIUrl":null,"url":null,"abstract":"Let XτI be an ideal topological space. A subset A of X is said to be β-open if A⊆clintclA, and it is said to be βI-open if there is a set O∈τ with the property 1O−A∈I and 2A−clintclO∈I. The set A is called βI-compact if every cover of A by βI-open sets has a finite sub-cover. The set A is said to be cβI-compact, if every cover Oλ:λ∈Λ of A by β-open sets, Λ has a finite subset Λ0 such that A−∪Oλ:λ∈Λ0∈I. The set A is said to be countably βI-compact if every countable cover of A by βI-open sets has a finite sub-cover. An ideal topological space XτI is said to be βI∗-hyperconnected if X−cl∗A∈I for every non-empty βI-open subset A of X. Two subsets A and B of X is said to be βI-separated if clβIA∩B=∅=A∩clβB. Moreover, A is called a βI-connected set if it can’t be written as a union of two βI-separated subsets. An ideal topological space XτI is called βI-connected space if X is βI-connected. In this article, we give some important properties of βI-open sets, βI-compact spaces, cβI-compact spaces, βI∗-hyperconnected spaces, and βI-connected spaces.","PeriodicalId":206412,"journal":{"name":"Advanced Topics of Topology [Working Title]","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Topics of Topology [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.101524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let XτI be an ideal topological space. A subset A of X is said to be β-open if A⊆clintclA, and it is said to be βI-open if there is a set O∈τ with the property 1O−A∈I and 2A−clintclO∈I. The set A is called βI-compact if every cover of A by βI-open sets has a finite sub-cover. The set A is said to be cβI-compact, if every cover Oλ:λ∈Λ of A by β-open sets, Λ has a finite subset Λ0 such that A−∪Oλ:λ∈Λ0∈I. The set A is said to be countably βI-compact if every countable cover of A by βI-open sets has a finite sub-cover. An ideal topological space XτI is said to be βI∗-hyperconnected if X−cl∗A∈I for every non-empty βI-open subset A of X. Two subsets A and B of X is said to be βI-separated if clβIA∩B=∅=A∩clβB. Moreover, A is called a βI-connected set if it can’t be written as a union of two βI-separated subsets. An ideal topological space XτI is called βI-connected space if X is βI-connected. In this article, we give some important properties of βI-open sets, βI-compact spaces, cβI-compact spaces, βI∗-hyperconnected spaces, and βI-connected spaces.