Machine Learning Models to Identify the Risk of Modern Slavery in Brazilian Cities

Marlu da Silva Santos, M. Ladeira, G. V. Erven, Gladston Luiz da Silva
{"title":"Machine Learning Models to Identify the Risk of Modern Slavery in Brazilian Cities","authors":"Marlu da Silva Santos, M. Ladeira, G. V. Erven, Gladston Luiz da Silva","doi":"10.1109/ICMLA.2019.00132","DOIUrl":null,"url":null,"abstract":"The scope of modern slavery encompasses human trafficking, forced labor, debt bondage and child labor. This article proposes the use of predictive models to identify the risk of modern slavery in Brazilian cities using real socioeconomic, demographic and rescue operations data. The study uses the embedded technique with Lasso regularization (L1) to select variables. A comparative analyze of techniques for treatment of imbalanced data was applied and the results indicated the Random Over-Sampling (ROS) as the best one. In total, 16 models are evaluated, consisting of 8 different data sets and two classifiers: Logistic Regression (LR) and Gradient Boosting Machine (GBM). The results indicate that the GBM model has better performance and efficiency, with accuracy of 77%, AUC 80% and G-mean of 71%.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The scope of modern slavery encompasses human trafficking, forced labor, debt bondage and child labor. This article proposes the use of predictive models to identify the risk of modern slavery in Brazilian cities using real socioeconomic, demographic and rescue operations data. The study uses the embedded technique with Lasso regularization (L1) to select variables. A comparative analyze of techniques for treatment of imbalanced data was applied and the results indicated the Random Over-Sampling (ROS) as the best one. In total, 16 models are evaluated, consisting of 8 different data sets and two classifiers: Logistic Regression (LR) and Gradient Boosting Machine (GBM). The results indicate that the GBM model has better performance and efficiency, with accuracy of 77%, AUC 80% and G-mean of 71%.
识别巴西城市现代奴隶制风险的机器学习模型
现代奴隶制的范围包括人口贩运、强迫劳动、债务奴役和童工。本文建议使用预测模型来识别巴西城市中使用真实的社会经济,人口和救援行动数据的现代奴隶制的风险。本研究采用Lasso正则化(L1)嵌入技术来选择变量。对比分析了几种处理不平衡数据的方法,结果表明随机过采样(ROS)是最好的处理方法。总共评估了16个模型,包括8个不同的数据集和两个分类器:逻辑回归(LR)和梯度增强机(GBM)。结果表明,GBM模型具有较好的性能和效率,准确率为77%,AUC为80%,g均值为71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信