Imputing human descriptions in semantic biometrics

MiFor '10 Pub Date : 2010-10-29 DOI:10.1145/1877972.1877982
D. Reid, M. Nixon
{"title":"Imputing human descriptions in semantic biometrics","authors":"D. Reid, M. Nixon","doi":"10.1145/1877972.1877982","DOIUrl":null,"url":null,"abstract":"Human identification at a distance has received significant interest due to the ever increasing surveillance infrastructure. Biometrics such as face and gait offer a suitable physical attribute to uniquely identify people from a distance. When linking this with human perception, these biometrics suffer from the semantic gap which is the difference between how people and how biometrics represent and describe humans. Semantic biometrics bridges this gap, allowing conversions between gait biometrics and semantic descriptions. One possible application of semantic biometrics is to automatically search surveillance footage for a person who best matches a given semantic description - possibly obtained from an eyewitness report. We now exploit patterns and structure within the physical descriptions to be able to predict occluded or erroneous data, thereby widening application potential. We show how imputation techniques can be used to increase accuracy and robustness of automatic semantic annotation of gait signatures.","PeriodicalId":355677,"journal":{"name":"MiFor '10","volume":"82 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MiFor '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1877972.1877982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Human identification at a distance has received significant interest due to the ever increasing surveillance infrastructure. Biometrics such as face and gait offer a suitable physical attribute to uniquely identify people from a distance. When linking this with human perception, these biometrics suffer from the semantic gap which is the difference between how people and how biometrics represent and describe humans. Semantic biometrics bridges this gap, allowing conversions between gait biometrics and semantic descriptions. One possible application of semantic biometrics is to automatically search surveillance footage for a person who best matches a given semantic description - possibly obtained from an eyewitness report. We now exploit patterns and structure within the physical descriptions to be able to predict occluded or erroneous data, thereby widening application potential. We show how imputation techniques can be used to increase accuracy and robustness of automatic semantic annotation of gait signatures.
语义生物识别中人类描述的输入
由于监视基础设施的不断增加,远距离人类识别受到了极大的关注。面部和步态等生物特征提供了一种合适的物理属性,可以从远处唯一地识别人。当将其与人类感知联系起来时,这些生物识别技术受到语义差距的影响,这是人类与生物识别技术如何代表和描述人类之间的差异。语义生物识别技术弥补了这一差距,允许步态生物识别和语义描述之间的转换。语义生物识别技术的一个可能应用是自动搜索监控录像,寻找最符合给定语义描述的人——可能是从目击者的报告中获得的。我们现在利用物理描述中的模式和结构来预测被遮挡或错误的数据,从而扩大应用潜力。我们展示了如何使用imputation技术来提高步态特征自动语义注释的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信