Face recognition for images from the same unknown person

Yea-Shuan Huang, Y. Tsai, Hong-Hsin Chao, Y. Chien
{"title":"Face recognition for images from the same unknown person","authors":"Yea-Shuan Huang, Y. Tsai, Hong-Hsin Chao, Y. Chien","doi":"10.1109/CCST.2003.1297614","DOIUrl":null,"url":null,"abstract":"This paper mainly introduces (1) a face recognition method by using a newly designed radial basis function (RBF) neural net which can iteratively reduce a purposely defined classification-oriented error function, and (2) a decision-making mechanism by accumulating multiple individual face recognition results of the same unknown targeted person. To experiment on 50 persons (each person has 32 training samples and 100 testing samples), although the recognition rate of individual sample is only 86.5%, a perfect recognition accuracy (i.e. 100% accuracy) has been achieved by accumulating 20 temporal face images. This shows that the proposed approaches can produce various degrees of security to support different face recognition applications.","PeriodicalId":344868,"journal":{"name":"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.","volume":"165 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2003.1297614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper mainly introduces (1) a face recognition method by using a newly designed radial basis function (RBF) neural net which can iteratively reduce a purposely defined classification-oriented error function, and (2) a decision-making mechanism by accumulating multiple individual face recognition results of the same unknown targeted person. To experiment on 50 persons (each person has 32 training samples and 100 testing samples), although the recognition rate of individual sample is only 86.5%, a perfect recognition accuracy (i.e. 100% accuracy) has been achieved by accumulating 20 temporal face images. This shows that the proposed approaches can produce various degrees of security to support different face recognition applications.
人脸识别从同一未知的人的图像
本文主要介绍了(1)一种利用新设计的径向基函数(RBF)神经网络的人脸识别方法,该方法可以迭代地减少有目的地定义的面向分类的误差函数;(2)一种通过积累同一未知目标人的多个个体人脸识别结果的决策机制。对50个人进行实验(每个人有32个训练样本和100个测试样本),虽然单个样本的识别率只有86.5%,但通过积累20张时间人脸图像,达到了完美的识别准确率(即100%准确率)。这表明所提出的方法可以产生不同程度的安全性,以支持不同的人脸识别应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信