Finding leaders from opinion networks

Hengmin Zhou, D. Zeng, Changli Zhang
{"title":"Finding leaders from opinion networks","authors":"Hengmin Zhou, D. Zeng, Changli Zhang","doi":"10.1109/ISI.2009.5137323","DOIUrl":null,"url":null,"abstract":"This paper is motivated to utilize results from opinion mining to facilitate social network analysis. We introduce the concept of Opinion Networks and propose a PageRank-like algorithm, named OpinionRank, to rank the nodes in an opinion network. This proposed approach has been applied to real-world datasets and initial experiments indicate that the sentiment information is helpful for finding leaders of online communities and that the OpinionRank method outperforms benchmark methods that ignore sentiment information.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"64 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

This paper is motivated to utilize results from opinion mining to facilitate social network analysis. We introduce the concept of Opinion Networks and propose a PageRank-like algorithm, named OpinionRank, to rank the nodes in an opinion network. This proposed approach has been applied to real-world datasets and initial experiments indicate that the sentiment information is helpful for finding leaders of online communities and that the OpinionRank method outperforms benchmark methods that ignore sentiment information.
从意见网络中寻找领导者
本文的动机是利用意见挖掘的结果来促进社会网络分析。我们引入了意见网络的概念,并提出了一种类似pagerank的算法,名为OpinionRank,用于对意见网络中的节点进行排名。该方法已应用于现实世界的数据集,初步实验表明,情感信息有助于寻找在线社区的领导者,并且OpinionRank方法优于忽略情感信息的基准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信