A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters

L. Versluis, Mihai Neacsu, A. Iosup
{"title":"A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters","authors":"L. Versluis, Mihai Neacsu, A. Iosup","doi":"10.1109/CCGRID.2018.00037","DOIUrl":null,"url":null,"abstract":"To improve customer experience, datacenter operators offer support for simplifying application and resource management. For example, running workloads of workflows on behalf of customers is desirable, but requires increasingly more sophisticated autoscaling policies, that is, policies that dynamically provision resources for the customer. Although selecting and tuning autoscaling policies is a challenging task for datacenter operators, so far relatively few studies investigate the performance of autoscaling for workloads of workflows. Complementing previous knowledge, in this work we propose the first comprehensive performance study in the field. Using trace-based simulation, we compare state-of-the-art autoscaling policies across multiple application domains, workload arrival patterns (e.g., burstiness), and system utilization levels. We further investigate the interplay between autoscaling and regular allocation policies, and the complexity cost of autoscaling. Our quantitative study focuses not only on traditional performance metrics and on state-of-the-art elasticity metrics, but also on time-and memory-related autoscaling-complexity metrics. Our main results give strong and quantitative evidence about previously unreported operational behavior, for example, that autoscaling policies perform differently across application domains and allocation and provisioning policies should be co-designed.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"281 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

To improve customer experience, datacenter operators offer support for simplifying application and resource management. For example, running workloads of workflows on behalf of customers is desirable, but requires increasingly more sophisticated autoscaling policies, that is, policies that dynamically provision resources for the customer. Although selecting and tuning autoscaling policies is a challenging task for datacenter operators, so far relatively few studies investigate the performance of autoscaling for workloads of workflows. Complementing previous knowledge, in this work we propose the first comprehensive performance study in the field. Using trace-based simulation, we compare state-of-the-art autoscaling policies across multiple application domains, workload arrival patterns (e.g., burstiness), and system utilization levels. We further investigate the interplay between autoscaling and regular allocation policies, and the complexity cost of autoscaling. Our quantitative study focuses not only on traditional performance metrics and on state-of-the-art elasticity metrics, but also on time-and memory-related autoscaling-complexity metrics. Our main results give strong and quantitative evidence about previously unreported operational behavior, for example, that autoscaling policies perform differently across application domains and allocation and provisioning policies should be co-designed.
基于跟踪的数据中心工作流工作负载自动伸缩性能研究
为了改善客户体验,数据中心运营商提供了简化应用程序和资源管理的支持。例如,代表客户运行工作流的工作负载是可取的,但需要越来越复杂的自动伸缩策略,即为客户动态提供资源的策略。尽管选择和调优自动伸缩策略对数据中心运营商来说是一项具有挑战性的任务,但迄今为止,很少有研究调查工作流工作负载的自动伸缩性能。补充之前的知识,在这项工作中,我们提出了该领域的第一个综合性能研究。使用基于跟踪的模拟,我们跨多个应用程序域、工作负载到达模式(例如,突发)和系统利用率级别比较最先进的自动伸缩策略。我们进一步研究了自动缩放和常规分配策略之间的相互作用,以及自动缩放的复杂性成本。我们的定量研究不仅关注传统的性能指标和最先进的弹性指标,还关注与时间和内存相关的自动扩展复杂性指标。我们的主要结果为以前未报告的操作行为提供了强有力的定量证据,例如,自动伸缩策略在应用程序域之间执行不同,分配和供应策略应该共同设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信