Two Computation Methods for Detecting Anisotropy in Image Texture

Wanxiao Sun, Anaz Zubair Kolappal, Peng Gong
{"title":"Two Computation Methods for Detecting Anisotropy in Image Texture","authors":"Wanxiao Sun, Anaz Zubair Kolappal, Peng Gong","doi":"10.1080/10824000509480604","DOIUrl":null,"url":null,"abstract":"Abstract The presence of anisotropy (direction-dependency) in image texture may result in significant bias in estimated fractal dimension (D) values obtained using existing computation methods, which may affect the effectiveness of fractal techniques in the characterization and classification of image textures. We propose two computation methods to detect the presence of anisotropy in remote sensing imagery. The proposed methods are based on the well accepted walking-dividers and triangular prism concepts and they allow the user to compute D in the 0°, 45°, 90°, and 135 directions. The proposed methods have been tested on real images with different textural appearance. Our results show that the proposed methods appear generally effective in detecting directional bias in estimated D values. The implications of our findings for remote sensing applications of fractal techniques are also discussed.","PeriodicalId":331860,"journal":{"name":"Geographic Information Sciences","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographic Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10824000509480604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract The presence of anisotropy (direction-dependency) in image texture may result in significant bias in estimated fractal dimension (D) values obtained using existing computation methods, which may affect the effectiveness of fractal techniques in the characterization and classification of image textures. We propose two computation methods to detect the presence of anisotropy in remote sensing imagery. The proposed methods are based on the well accepted walking-dividers and triangular prism concepts and they allow the user to compute D in the 0°, 45°, 90°, and 135 directions. The proposed methods have been tested on real images with different textural appearance. Our results show that the proposed methods appear generally effective in detecting directional bias in estimated D values. The implications of our findings for remote sensing applications of fractal techniques are also discussed.
图像纹理各向异性检测的两种计算方法
摘要图像纹理的各向异性(方向依赖)会导致现有计算方法在估计分形维数(D)值时存在显著偏差,从而影响分形技术在图像纹理表征和分类中的有效性。提出了两种检测遥感图像中有无各向异性的计算方法。所提出的方法基于广为接受的行走分割线和三角棱镜概念,它们允许用户在0°,45°,90°和135个方向上计算D。该方法已在具有不同纹理外观的真实图像上进行了测试。我们的结果表明,所提出的方法在检测估计D值的方向偏差方面普遍有效。本文还讨论了本研究结果对分形技术遥感应用的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信