Clifford subsystem codes

A. Klappenecker
{"title":"Clifford subsystem codes","authors":"A. Klappenecker","doi":"10.1109/ISIT.2010.5513672","DOIUrl":null,"url":null,"abstract":"Subsystem codes are a generalization of decoherence free subspaces, noiseless subsystems, and quantum error-correcting codes. The known constructions of subsystem codes from classical codes are limited to quantum systems that all have the same dimension, and this dimension must be a power of a prime. It is shown that one can remove these restrictions and obtain subsystem codes in quantum systems of arbitrary finite dimension from classical codes that are subgroups of an abelian group. The constructions are derived from Clifford codes over abstract error groups with abelian index groups.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"626 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Subsystem codes are a generalization of decoherence free subspaces, noiseless subsystems, and quantum error-correcting codes. The known constructions of subsystem codes from classical codes are limited to quantum systems that all have the same dimension, and this dimension must be a power of a prime. It is shown that one can remove these restrictions and obtain subsystem codes in quantum systems of arbitrary finite dimension from classical codes that are subgroups of an abelian group. The constructions are derived from Clifford codes over abstract error groups with abelian index groups.
克利福德子系统代码
子系统码是无退相干子空间、无噪声子系统和量子纠错码的概括。从经典码中得到的子系统码的已知结构仅限于具有相同维数的量子系统,并且该维数必须是素数的幂次。证明了在任意有限维量子系统中,可以从作为阿贝尔群子群的经典码中去除这些限制而得到子系统码。该结构是由带有阿贝尔索引群的抽象错误群上的Clifford码导出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信