Yi Zou, S. Chakravarty, Chi-Jui Chung, Ray T. Chen
{"title":"Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach–Zehnder interferometers","authors":"Yi Zou, S. Chakravarty, Chi-Jui Chung, Ray T. Chen","doi":"10.1117/12.2214440","DOIUrl":null,"url":null,"abstract":"Ultracompact thermooptically tuned photonic crystal waveguide (PCW) based Mach–Zehnder interferometers (MZIs) working in silicon-on-sapphire in mid-infrared regime have been proposed and demonstrated. We designed and fabricated a PCW based silicon thermo-optic (TO) switch operating at 3.43 μm. Both steady-state and transient thermal analyses were performed to evaluate the thermal performance of the TO MZIs. The required π phase shift between the two arms of the MZI has been successfully achieved within an 80 μm interaction distance. The maximum modulation depth of 74% was demonstrated for switching power of 170 mW.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE OPTO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2214440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Ultracompact thermooptically tuned photonic crystal waveguide (PCW) based Mach–Zehnder interferometers (MZIs) working in silicon-on-sapphire in mid-infrared regime have been proposed and demonstrated. We designed and fabricated a PCW based silicon thermo-optic (TO) switch operating at 3.43 μm. Both steady-state and transient thermal analyses were performed to evaluate the thermal performance of the TO MZIs. The required π phase shift between the two arms of the MZI has been successfully achieved within an 80 μm interaction distance. The maximum modulation depth of 74% was demonstrated for switching power of 170 mW.