Human Brain Tissue Segmentation in fMRI using Deep Long-Term Recurrent Convolutional Network

Sui Paul Ang, S. L. Phung, M. Schira, A. Bouzerdoum, S. T. Duong
{"title":"Human Brain Tissue Segmentation in fMRI using Deep Long-Term Recurrent Convolutional Network","authors":"Sui Paul Ang, S. L. Phung, M. Schira, A. Bouzerdoum, S. T. Duong","doi":"10.1109/DICTA.2018.8615850","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of different brain tissue types is an important step in the study of neuronal activities using functional magnetic resonance imaging (fMRI). Traditionally, due to the low spatial resolution of fMRI data and the absence of an automated segmentation approach, human experts often resort to superimposing fMRI data on high resolution structural MRI images for analysis. The recent advent of fMRI with higher spatial resolutions offers a new possibility of differentiating brain tissues by their spatio-temporal characteristics, without relying on the structural MRI images. In this paper, we propose a patch-wise deep learning method for segmenting human brain tissues into five types, which are gray matter, white matter, blood vessel, non-brain and cerebrospinal fluid. The proposed method achieves a classification rate of 84.04% and a Dice similarity coefficient of 76.99%, which exceed those by several other methods.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Accurate segmentation of different brain tissue types is an important step in the study of neuronal activities using functional magnetic resonance imaging (fMRI). Traditionally, due to the low spatial resolution of fMRI data and the absence of an automated segmentation approach, human experts often resort to superimposing fMRI data on high resolution structural MRI images for analysis. The recent advent of fMRI with higher spatial resolutions offers a new possibility of differentiating brain tissues by their spatio-temporal characteristics, without relying on the structural MRI images. In this paper, we propose a patch-wise deep learning method for segmenting human brain tissues into five types, which are gray matter, white matter, blood vessel, non-brain and cerebrospinal fluid. The proposed method achieves a classification rate of 84.04% and a Dice similarity coefficient of 76.99%, which exceed those by several other methods.
基于深度长期递归卷积网络的fMRI人脑组织分割
在功能磁共振成像(fMRI)研究神经元活动中,准确分割不同的脑组织类型是一个重要步骤。传统上,由于fMRI数据的空间分辨率较低,并且缺乏自动分割的方法,人类专家经常求助于将fMRI数据叠加在高分辨率的结构MRI图像上进行分析。近年来,具有更高空间分辨率的功能磁共振成像技术的出现,为不依赖于结构MRI图像,通过其时空特征来区分脑组织提供了新的可能性。在本文中,我们提出了一种基于补丁的深度学习方法,将人脑组织分为灰质、白质、血管、非脑和脑脊液五种类型。该方法的分类率为84.04%,Dice相似系数为76.99%,优于其他几种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信