A capacity-efficient insertion policy for dynamic cache resizing mechanisms

Masayuki Sato, Yusuke Tobo, Ryusuke Egawa, H. Takizawa, Hiroaki Kobayashi
{"title":"A capacity-efficient insertion policy for dynamic cache resizing mechanisms","authors":"Masayuki Sato, Yusuke Tobo, Ryusuke Egawa, H. Takizawa, Hiroaki Kobayashi","doi":"10.1145/2212908.2212949","DOIUrl":null,"url":null,"abstract":"Dynamic cache resizing mechanisms have been proposed to achieve both high performance and low energy consumption. The basic idea behind such mechanisms is to divide a cache into some parts, and manage them independently to resize the cache for resource allocation and energy saving. However, dynamic cache resizing mechanisms waste their resource to store a lot of dead-on-fill blocks, which are not reused after being stored in the cache. To reduce the number of dead-on-fill blocks in the cache and thus improve energy efficiency of dynamic cache resizing mechanisms, this paper proposes a dynamic LRU-K insertion policy. The policy stores a new coming block as the K-th least-recently-used one and adjusts K dynamically according to the application to be executed. Therefore, the policy can balance between early eviction of dead-on-fill blocks and retainment of reusable blocks.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2212908.2212949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic cache resizing mechanisms have been proposed to achieve both high performance and low energy consumption. The basic idea behind such mechanisms is to divide a cache into some parts, and manage them independently to resize the cache for resource allocation and energy saving. However, dynamic cache resizing mechanisms waste their resource to store a lot of dead-on-fill blocks, which are not reused after being stored in the cache. To reduce the number of dead-on-fill blocks in the cache and thus improve energy efficiency of dynamic cache resizing mechanisms, this paper proposes a dynamic LRU-K insertion policy. The policy stores a new coming block as the K-th least-recently-used one and adjusts K dynamically according to the application to be executed. Therefore, the policy can balance between early eviction of dead-on-fill blocks and retainment of reusable blocks.
用于动态缓存调整大小机制的高效容量插入策略
为了实现高性能和低能耗,提出了动态缓存调整机制。这种机制背后的基本思想是将缓存分成若干部分,并独立管理它们以调整缓存大小,以实现资源分配和节能。然而,动态缓存调整机制会浪费资源来存储大量的“未填充”块,这些块在存储到缓存后不会被重用。为了减少缓存中未填充死块的数量,从而提高动态缓存调整机制的能量效率,本文提出了一种动态LRU-K插入策略。该策略将即将到来的新块存储为最近最少使用的第K个块,并根据要执行的应用程序动态调整K。因此,该策略可以在早期清除已死填充块和保留可重用块之间取得平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信