INF-UFG at FiQA 2018 Task 1: Predicting Sentiments and Aspects on Financial Tweets and News Headlines

Dayan de França Costa, Nádia Félix Felipe Da Silva
{"title":"INF-UFG at FiQA 2018 Task 1: Predicting Sentiments and Aspects on Financial Tweets and News Headlines","authors":"Dayan de França Costa, Nádia Félix Felipe Da Silva","doi":"10.1145/3184558.3191828","DOIUrl":null,"url":null,"abstract":"This paper describes our system which participate in Task 1 of FiQA 2018. The task's focuses was to predict sentiment and aspects of financial microblog posts and headlines. The sentiment analysis for a specific company had to be predicted using a scale between -1 and 1, while the aspect prediction had to be predicted using a set of aspects which was given in train data. We had used Support Vector Regression (SVR) to predict the sentiments in both cases (microblog posts and headlines).","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"124 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3191828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper describes our system which participate in Task 1 of FiQA 2018. The task's focuses was to predict sentiment and aspects of financial microblog posts and headlines. The sentiment analysis for a specific company had to be predicted using a scale between -1 and 1, while the aspect prediction had to be predicted using a set of aspects which was given in train data. We had used Support Vector Regression (SVR) to predict the sentiments in both cases (microblog posts and headlines).
在FiQA 2018任务1:预测财经推文和新闻标题的情绪和方面
本文介绍了我们参与FiQA 2018任务1的系统。这项任务的重点是预测财经微博帖子和头条新闻的情绪和方面。特定公司的情感分析必须使用-1到1之间的刻度进行预测,而方面预测必须使用列车数据中给出的一组方面进行预测。我们使用支持向量回归(SVR)来预测两种情况下(微博帖子和头条新闻)的情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信