Super-algebraically convergent mathematical model of hollow waveguldes by Analytical Regularization Method

Y. Tuchkin, O. Suvorova, F. Dikmen
{"title":"Super-algebraically convergent mathematical model of hollow waveguldes by Analytical Regularization Method","authors":"Y. Tuchkin, O. Suvorova, F. Dikmen","doi":"10.1109/MSMW.2010.5546203","DOIUrl":null,"url":null,"abstract":"An accurate and efficient simulation of hollow waveguides is in demand for many practical applications including those in the area of microwave engineering. But very many numerical methods produce ill conditioned matrix that getting correct results needs various numerical experiments (see, for example, [1], where the authors mentioned the instability of the method for the matrices of big sizes). Thus, some alternative numerically stable and efficient approach is in demand. Our algorithm based on Analytical Regularization Method [2]–[3], adopted in this paper for spectral problems, brings just such alternative to, at least, the hollow waveguide modeling considered herein.","PeriodicalId":129834,"journal":{"name":"2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2010.5546203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An accurate and efficient simulation of hollow waveguides is in demand for many practical applications including those in the area of microwave engineering. But very many numerical methods produce ill conditioned matrix that getting correct results needs various numerical experiments (see, for example, [1], where the authors mentioned the instability of the method for the matrices of big sizes). Thus, some alternative numerically stable and efficient approach is in demand. Our algorithm based on Analytical Regularization Method [2]–[3], adopted in this paper for spectral problems, brings just such alternative to, at least, the hollow waveguide modeling considered herein.
用解析正则化方法建立空心波导的超代数收敛数学模型
在包括微波工程领域在内的许多实际应用中,对空心波导进行精确、高效的仿真是很有必要的。但是,很多数值方法产生的是病态矩阵,要得到正确的结果需要各种数值实验(例如,参见[1],作者提到了大尺寸矩阵的方法的不稳定性)。因此,需要一些数值稳定和有效的替代方法。本文所采用的基于解析正则化方法[2]-[3]的算法,至少为本文所考虑的空心波导建模提供了这样的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信