Autonomous evolutionary algorithm in medical data analysis

M. Sprogar, P. Kokol, S. Alayón
{"title":"Autonomous evolutionary algorithm in medical data analysis","authors":"M. Sprogar, P. Kokol, S. Alayón","doi":"10.1109/CBMS.2002.1011357","DOIUrl":null,"url":null,"abstract":"A novel autonomous evolutionary algorithm for the construction of decision trees is presented, together with an analysis of different medical data sets. The algorithm's capability to self-adapt to a given problem is used as a measure to predict if some data set is just difficult or whether it is impossible to analyze. If a specific data set doesn't include enough or proper information for the creation of a good general decision model then over-fitting will occur. To detect over-fitting, we can use several existing techniques; the most common uses special test data that is excluded from the learning phase. On average, the autonomous algorithm produces very general solutions, or gives no solution if the data set is prone to over-fitting.","PeriodicalId":369629,"journal":{"name":"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2002.1011357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A novel autonomous evolutionary algorithm for the construction of decision trees is presented, together with an analysis of different medical data sets. The algorithm's capability to self-adapt to a given problem is used as a measure to predict if some data set is just difficult or whether it is impossible to analyze. If a specific data set doesn't include enough or proper information for the creation of a good general decision model then over-fitting will occur. To detect over-fitting, we can use several existing techniques; the most common uses special test data that is excluded from the learning phase. On average, the autonomous algorithm produces very general solutions, or gives no solution if the data set is prone to over-fitting.
自主进化算法在医疗数据分析中的应用
提出了一种新的自主进化决策树构建算法,并对不同的医疗数据集进行了分析。该算法对给定问题的自适应能力被用作预测某些数据集是否难以分析或是否无法分析的一种措施。如果一个特定的数据集没有包含足够或适当的信息来创建一个好的通用决策模型,那么就会发生过拟合。为了检测过拟合,我们可以使用几种现有的技术;最常见的是使用排除在学习阶段之外的特殊测试数据。平均而言,自治算法产生非常一般的解,或者如果数据集容易过度拟合则不给出解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信