Characterizing Power and Performance of GPU Memory Access

Tyler N. Allen, Rong Ge
{"title":"Characterizing Power and Performance of GPU Memory Access","authors":"Tyler N. Allen, Rong Ge","doi":"10.1109/E2SC.2016.8","DOIUrl":null,"url":null,"abstract":"Power is a major limiting factor for the future of HPC and the realization of exascale computing under a power budget. GPUs have now become a mainstream parallel computation device in HPC, and optimizing power usage on GPUs is critical to achieving future goals. GPU memory is seldom studied, especially for power usage. Nevertheless, memory accesses draw significant power and are critical to understanding and optimizing GPU power usage. In this work we investigate the power and performance characteristics of various GPU memory accesses. We take an empirical approach and experimentally examine and evaluate how GPU power and performance vary with data access patterns and software parameters including GPU thread block size. In addition, we take into account the advanced power saving technology dynamic voltage and frequency scaling (DVFS) on GPU processing units and global memory. We analyze power and performance and provide some suggestions for the optimal parameters for applications that heavily use specific memory operations.","PeriodicalId":424743,"journal":{"name":"2016 4th International Workshop on Energy Efficient Supercomputing (E2SC)","volume":"17 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Workshop on Energy Efficient Supercomputing (E2SC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/E2SC.2016.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Power is a major limiting factor for the future of HPC and the realization of exascale computing under a power budget. GPUs have now become a mainstream parallel computation device in HPC, and optimizing power usage on GPUs is critical to achieving future goals. GPU memory is seldom studied, especially for power usage. Nevertheless, memory accesses draw significant power and are critical to understanding and optimizing GPU power usage. In this work we investigate the power and performance characteristics of various GPU memory accesses. We take an empirical approach and experimentally examine and evaluate how GPU power and performance vary with data access patterns and software parameters including GPU thread block size. In addition, we take into account the advanced power saving technology dynamic voltage and frequency scaling (DVFS) on GPU processing units and global memory. We analyze power and performance and provide some suggestions for the optimal parameters for applications that heavily use specific memory operations.
GPU内存访问的功耗和性能表征
功率是未来高性能计算和在功率预算下实现百亿亿次计算的主要限制因素。gpu已经成为高性能计算领域的主流并行计算设备,优化gpu的功耗是实现未来目标的关键。GPU内存很少被研究,尤其是在功耗方面。然而,内存访问需要大量的能量,对于理解和优化GPU的能量使用是至关重要的。在这项工作中,我们研究了各种GPU内存访问的功率和性能特征。我们采用经验方法,实验检查和评估GPU功率和性能如何随数据访问模式和软件参数(包括GPU线程块大小)而变化。此外,我们还考虑了GPU处理单元和全局存储器上的先进节能技术动态电压和频率缩放(DVFS)。我们分析了功耗和性能,并为大量使用特定内存操作的应用程序提供了一些最佳参数建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信