Kristoffer Christensen, Zheng Ma, Magnus Værbak, Y. Demazeau, B. Jørgensen
{"title":"Agent-based Decision Making for Adoption of Smart Energy Solutions","authors":"Kristoffer Christensen, Zheng Ma, Magnus Værbak, Y. Demazeau, B. Jørgensen","doi":"10.1109/SHIRCON48091.2019.9024880","DOIUrl":null,"url":null,"abstract":"Agent-based simulation of the decision-making process for adoption of smart energy solutions can provide evidence for smart energy solutions' providers to decide for a business strategy which results in the best adoption rate. The adoption rate of smart energy solutions is important in achieving climate goals, such as the Danish goal to have 100% renewable electricity production by 2030. This paper shows how agent-based simulation can be used to investigate the decision-making process for adoption of smart energy solutions. The study investigates a case about Danish commercial greenhouse growers' adoption of a demand response program. The simulation outputs an adoption curve and grower information. The results provide the maximum monetary cost for achieving an adoption rate of 50% in 5 years.","PeriodicalId":113450,"journal":{"name":"2019 IEEE Sciences and Humanities International Research Conference (SHIRCON)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Sciences and Humanities International Research Conference (SHIRCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHIRCON48091.2019.9024880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Agent-based simulation of the decision-making process for adoption of smart energy solutions can provide evidence for smart energy solutions' providers to decide for a business strategy which results in the best adoption rate. The adoption rate of smart energy solutions is important in achieving climate goals, such as the Danish goal to have 100% renewable electricity production by 2030. This paper shows how agent-based simulation can be used to investigate the decision-making process for adoption of smart energy solutions. The study investigates a case about Danish commercial greenhouse growers' adoption of a demand response program. The simulation outputs an adoption curve and grower information. The results provide the maximum monetary cost for achieving an adoption rate of 50% in 5 years.