A Combinatorial Approach to Explaining Image Classifiers

Jaganmohan Chandrasekaran, Yu Lei, R. Kacker, D. R. Kuhn
{"title":"A Combinatorial Approach to Explaining Image Classifiers","authors":"Jaganmohan Chandrasekaran, Yu Lei, R. Kacker, D. R. Kuhn","doi":"10.1109/ICSTW52544.2021.00019","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) models, a core component to artificial intelligence systems, often come as a black box to the user, leading to the problem of interpretability. Explainable Artificial Intelligence (XAI) is key to providing confidence and trustworthiness for machine learning-based software systems. We observe a fundamental connection between XAI and software fault localization. In this paper, we present an approach that uses BEN, a combinatorial testing-based software fault localization approach, to produce explanations for decisions made by ML models.","PeriodicalId":371680,"journal":{"name":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","volume":"13 1-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTW52544.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Machine Learning (ML) models, a core component to artificial intelligence systems, often come as a black box to the user, leading to the problem of interpretability. Explainable Artificial Intelligence (XAI) is key to providing confidence and trustworthiness for machine learning-based software systems. We observe a fundamental connection between XAI and software fault localization. In this paper, we present an approach that uses BEN, a combinatorial testing-based software fault localization approach, to produce explanations for decisions made by ML models.
一种组合方法解释图像分类器
机器学习(ML)模型是人工智能系统的核心组成部分,对用户来说往往是一个黑盒子,导致可解释性问题。可解释人工智能(XAI)是为基于机器学习的软件系统提供信心和可信度的关键。我们观察到XAI与软件故障定位之间的基本联系。在本文中,我们提出了一种使用BEN(一种基于组合测试的软件故障定位方法)的方法,为ML模型做出的决策提供解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信