Improving robustness of monocular VT&R system with multiple hypothesis

Xubin Lin, Weinan Chen, Li He, Y. Guan, Guanfeng Liu
{"title":"Improving robustness of monocular VT&R system with multiple hypothesis","authors":"Xubin Lin, Weinan Chen, Li He, Y. Guan, Guanfeng Liu","doi":"10.1109/ROBIO.2017.8324443","DOIUrl":null,"url":null,"abstract":"Visual Teach and Repeat (VT&R) has proven to be an important ingredient for mobile robot navigation. For VT&R, visual localization on a known map is a challenging task, especially in the case of motion jitter, feature-poor scenes and occlusion. State-of-the-art feature-based localization or SLAM algorithms sometimes may fail to overcome these challenges, and, as a result, suffer from tracking loss. To solve the problem of tracking loss in monocular-SLAM-based VT&R, we propose a particle filter (PF) based algorithm, which can provide robust location estimation even under challenging conditions. Our experiments verify the ability of our proposed PF-VT&R method.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Visual Teach and Repeat (VT&R) has proven to be an important ingredient for mobile robot navigation. For VT&R, visual localization on a known map is a challenging task, especially in the case of motion jitter, feature-poor scenes and occlusion. State-of-the-art feature-based localization or SLAM algorithms sometimes may fail to overcome these challenges, and, as a result, suffer from tracking loss. To solve the problem of tracking loss in monocular-SLAM-based VT&R, we propose a particle filter (PF) based algorithm, which can provide robust location estimation even under challenging conditions. Our experiments verify the ability of our proposed PF-VT&R method.
提高多假设单目VT&R系统的鲁棒性
视觉教学和重复(VT&R)已被证明是移动机器人导航的重要组成部分。对于VT&R来说,在已知地图上进行视觉定位是一项具有挑战性的任务,特别是在运动抖动、特征差的场景和遮挡的情况下。最先进的基于特征的定位或SLAM算法有时可能无法克服这些挑战,并因此遭受跟踪损失。为了解决基于单眼slam的VT&R中的跟踪损失问题,我们提出了一种基于粒子滤波(PF)的算法,该算法即使在具有挑战性的条件下也能提供鲁棒的位置估计。实验验证了所提出的PF-VT&R方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信