Multi-task Learning with Consistent Prediction for Efficient Breast Ultrasound Tumor Detection

Kaiwen Yang, Aiga Suzuki, Jiaxing Ye, H. Nosato, Ayumi Izumori, H. Sakanashi
{"title":"Multi-task Learning with Consistent Prediction for Efficient Breast Ultrasound Tumor Detection","authors":"Kaiwen Yang, Aiga Suzuki, Jiaxing Ye, H. Nosato, Ayumi Izumori, H. Sakanashi","doi":"10.1109/BIBM55620.2022.9995444","DOIUrl":null,"url":null,"abstract":"Segmentation and classification a re h ighly correlated tasks in tumor detection from breast ultrasound images. Recent studies have successfully applied multi-task learning to breast ultrasound image analysis to explore the correlation between tasks. However, there exists potential inconsistency between individual tasks that critically affect the overall performance of breast ultrasound image analysis. Therefore, this study designs a consistency branch for harmonizing the segmentation and classification t ask 0 ptimization. T he c onsistency b ranch characterizes the outputs of individual task-specific models to maintain consistency during training, thereby generating highly consistent results. Specifically, the consistency branch outputs a consistency probability while determining the inconsistency types predicted by both tasks. Subsequently, the segmentation and classification loss weights are reconciled using consistency probabilities based on the inconsistent prediction behavior for each sample, thus constraining the two tasks to produce consistent predictions close to the ground truth. The evaluation using private and public breast ultrasound image datasets indicates that the proposed method can effectively remedy the inconsistent predictions between tasks for improved computerized breast ultrasound image analysis.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation and classification a re h ighly correlated tasks in tumor detection from breast ultrasound images. Recent studies have successfully applied multi-task learning to breast ultrasound image analysis to explore the correlation between tasks. However, there exists potential inconsistency between individual tasks that critically affect the overall performance of breast ultrasound image analysis. Therefore, this study designs a consistency branch for harmonizing the segmentation and classification t ask 0 ptimization. T he c onsistency b ranch characterizes the outputs of individual task-specific models to maintain consistency during training, thereby generating highly consistent results. Specifically, the consistency branch outputs a consistency probability while determining the inconsistency types predicted by both tasks. Subsequently, the segmentation and classification loss weights are reconciled using consistency probabilities based on the inconsistent prediction behavior for each sample, thus constraining the two tasks to produce consistent predictions close to the ground truth. The evaluation using private and public breast ultrasound image datasets indicates that the proposed method can effectively remedy the inconsistent predictions between tasks for improved computerized breast ultrasound image analysis.
多任务学习与一致预测的高效乳腺超声肿瘤检测
在乳腺超声图像的肿瘤检测中,分割和分类是两个高度相关的任务。近年来的研究成功地将多任务学习应用于乳腺超声图像分析,探索任务间的相关性。然而,个别任务之间存在潜在的不一致,严重影响乳房超声图像分析的整体性能。因此,本研究设计了一个一致性分支来协调分割和分类,以达到最优化的目的。c一致性b分支描述了单个任务特定模型的输出特征,以便在训练期间保持一致性,从而生成高度一致的结果。具体来说,一致性分支在确定两个任务预测的不一致类型时输出一致性概率。随后,基于每个样本的不一致预测行为,使用一致性概率来协调分割和分类损失权重,从而约束两个任务产生接近基本事实的一致预测。利用私人和公共乳房超声图像数据集进行的评估表明,该方法可以有效地弥补任务之间预测不一致的问题,从而改进计算机乳房超声图像分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信