{"title":"Method of combine orbit determination and its application in Space Based Technology","authors":"Pan Xiaogang, Zhou Haiyin","doi":"10.1109/AERO.2009.4839536","DOIUrl":null,"url":null,"abstract":"Space Based technology is the tendency of new technology of space surveillance since the Space-Based Visible (SBV) gained great success within its experiment mission. With advantages of covering rate and multi-goals exploring capability, the Space Based technology had been applied to many fields such as LEO satellite determination based on GPS, midcourse ballistic missile tracking and so on, the main challenge for space based observation is errors of platform which can badly contaminate the observation data. In space, the SBV platform will be shaken with high frequency error and the axes will be circumvolved with low frequency, so the observation data contains not only stochastic errors data but also system errors data with different frequency. How to describe the system error and improve the orbit determination of spacecraft based on space based observation data is the goal of this paper. Combine orbit determination method is to deal with the SBV satellite orbit and space object satellite orbit synchronously, so the system error of SBV will be restrained. Batch orbit determination method and combine orbit determination algorithm were involved in the paper. By generating a new strategy to analyz the residuals of orbit determination, it is designed to produce the near true environment observation error model, and to compensate in calculation. Thus, semi-parametric non linear model was introduced in this paper, which can distinctly describe the LEO satellite observation model and dynamic model based on Space Based Surveillance System, and a nonparametric estimator was proposed to solve the semi-parametric non linear model, finally the Fourier Transform Method for non-parametric parts was applied to decompose the different system signals in orbit to distinguish the dynamic error model and the observation error model or satellite platform error of space based satellite.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Space Based technology is the tendency of new technology of space surveillance since the Space-Based Visible (SBV) gained great success within its experiment mission. With advantages of covering rate and multi-goals exploring capability, the Space Based technology had been applied to many fields such as LEO satellite determination based on GPS, midcourse ballistic missile tracking and so on, the main challenge for space based observation is errors of platform which can badly contaminate the observation data. In space, the SBV platform will be shaken with high frequency error and the axes will be circumvolved with low frequency, so the observation data contains not only stochastic errors data but also system errors data with different frequency. How to describe the system error and improve the orbit determination of spacecraft based on space based observation data is the goal of this paper. Combine orbit determination method is to deal with the SBV satellite orbit and space object satellite orbit synchronously, so the system error of SBV will be restrained. Batch orbit determination method and combine orbit determination algorithm were involved in the paper. By generating a new strategy to analyz the residuals of orbit determination, it is designed to produce the near true environment observation error model, and to compensate in calculation. Thus, semi-parametric non linear model was introduced in this paper, which can distinctly describe the LEO satellite observation model and dynamic model based on Space Based Surveillance System, and a nonparametric estimator was proposed to solve the semi-parametric non linear model, finally the Fourier Transform Method for non-parametric parts was applied to decompose the different system signals in orbit to distinguish the dynamic error model and the observation error model or satellite platform error of space based satellite.